
Camera Pose Estimation using Particle Filters
Fernando Herranz* and Kavitha Muthukrishnan** and Koen Langendoen**

*University of Alcalá, Department of Electronics, Alcalá, Spain. Email:fernando.herranz@depeca.uah.es
**Delft University of Technology, Embedded Software Group, Delft,The Netherlands. Email: k.muthukrishnan@tudelft.nl

Abstract—In this paper we propose a pose estimation algorithm
based on Particle filtering which uses LED sightings gathered
from wireless sensor nodes (WSN) to estimate the pose of the
camera. The LEDs act as (visual) markers for our pose estimation
algorithm. We show the effectiveness of our pose estimation
algorithm for different camera frame rates, varying measurement
noise and for different marker distribution. Our results (small-
scale experimental and room-level simulation studies) show that
the particle filtering algorithm gives an accuracy of a few
millimetres in position and a few degrees in orientation.

I. INTRODUCTION

Determining the position and orientation (pose) of an ob-
ject found its application, traditionally, in virtual/augmented
reality, gaming and robotics. There are many approaches and
technologies to detect and track the pose of an object. For
example, mechanical, magnetic, inertial, vision, and hybrid
solutions exist, each having its pros and cons [7]. Vision-
based tracking systems process image streams from cameras to
locate or track people and objects [4]. One of the limitations
of vision-based tracking is the inability to easily detect the
tracked object’s identity. It also has a higher processing
cost as detection and tracking algorithms tend to be more
complex, due to difficulty in achieving a robust detection.
Alternatively, fiducial marker-based systems are available [3]
[1]. Markers associated with objects make the task of finding
and distinguishing objects easier, especially when the markers
are encoded with identification information in some way. Most
of the marker-based systems differ in the way the cameras and
the markers (also known as landmarks or fiducials) are used
as either (i) Outside-in systems – where a set of cameras are
placed at static points in the environment to monitor objects
within that environment, or (ii) Inside-out systems – where
one or multiple cameras carried by an object can determine
its position and orientation in relation to a set of static markers
placed in the environment.

The system we present in this paper is an inside-out system
that, makes use of LED sightings gathered from wireless
sensor nodes to estimate the pose of the camera (shown in
Figure 1). Our system consists of an outward looking camera
unit (CCD camera) whose pose is to be estimated and a set
of static LED markers. The camera unit observes a set of
LEDs that are sequentially flashed (one-at-a-time). We flash
the LEDs one-at-a-time as this enforces point correspondence.
The communication and synchronisation between the markers
is coordinated by the WSN. The observation (or measurement)
are the 2D image coordinates [u, v] of 3D scene points [x, y, z].
Given the intrinsic camera parameters, the location of the LED

0

100

200

300

200 100 0 100 200 300

0

50

100

150

200

x

z

z= [u,v]

 [x,y,z]

y

u
v

Image plane (as seen
by camera)

Camera’s
Pose

Fig. 1: Camera pose (position and orientation) estimation from
observing eight LED markers.

markers and their corresponding pixel coordinates [u, v] the
camera’s pose (position and orientation) can be computed.
There are two crucial differences between our approach and
that of prior work on pose estimation: first, we utilise LEDs on
the wireless sensor nodes for pose-estimation purposes (LEDs
have been used in sensor nodes mostly for visual inspection
and debugging purposes, and we are extending their usage to
pose estimation); secondly, we use the radio transceiver on the
nodes to transmit their identifiers, thus even further reducing
the processing cost compared to fiducial-based vision systems.
The main contribution of this paper is the formulation of a pose
estimation algorithm based on particle filtering which, uses
LED sightings gathered from wireless sensor nodes (WSN)
to estimate the pose of the camera. We also consider the
effectiveness of the presented algorithm for different camera
frame rates, measurement noise and under different LED
visibility conditions using a mix of experimental and simulated
data.

II. PRELIMINARIES: LED DETECTION AND CAMERA
MODEL

The LED detection mechanism operates on the raw distorted
image. The image coordinates [u, v] of the brightest pixel in
the image are considered as a first estimate for the pixel coordi-
nates of the LED. This first estimate is improved by a sub-pixel
analysis phase. This is done by taking a weighted average of
the pixel locations around [u, v]. The weights themselves are
just intensities of the pixels minus some dynamic threshold.

In this work we use a standard pin-hole camera model [2].
The 3D coordinates of a LED (sensor node) is defined as
[x, y, z]T and the corresponding projection on the camera

image plane zzz is [u, v]T . These are related by sz̃̃z̃z = Px̃̃x̃x, where
the tilde on the vectors indicate they are in homogeneous
coordinates, s is a scale factor and P is a 3x4 projection
matrix defined up to scale. The projection matrix P is the
composition of the camera intrinsic matrix K and the extrinsic
parameter matrix [R ttt]. The latter transforms points from the
world coordinate system to the camera coordinate system; R
is a rotation matrix and ttt is a translation vector.

P = KKK[R ttt] (1)

III. POSE ESTIMATION ALGORITHMS: OVERVIEW

A. Particle Filters for Camera Pose Estimation

Pose estimation involves calculating the rotation matrix R
and translation vector ~t (i.e the extrinsic parameters of the
camera), given the camera intrinsic matrix K, the locations of
the LED markers, and the measured pixel coordinates of the
sighted LEDs together with their identities. In this section we
present our algorithm based on Particle filtering.

The particle filter (PF) is a form of Bayesian estimation
which is used to track the pose of the camera. The PF is a
recursive state estimator which has the ability to deal with
non-gaussians and multimodal probability density function
(pdf). We maintain the camera’s position, orientation and
their derivatives as the state vector. The complete state is
then represented by state = [x, y, z, ẋ, ẏ, ż, θ, φ, ψ, θ̇, φ̇, ψ̇] =
[~x,~v,ααα,ωωω]. Instead of storing the Euler angles ααα (i.e., the
orientation of the camera) we store the rotation matrix Rααα
that represents this angle. In the prediction phase of the filter
we incorporate the knowledge of the system model and in the
measurement phase, we incorporate the pixel coordinates of
the detected LEDs in the image plane.

The key idea of PF is to represent the pdf by a set of random
samples with associated weights and to compute the estimates
based on these samples and weights. In the initialisation phase,
the particles are uniformly distributed around the environment
in order to cover all the space because it is assumed that
the system does not have any previous knowledge about the
initial pose of the camera. If the system has some knowledge
about the initial pose of the camera the particles can be
smartly distributed decreasing the number of particles needed
and hence decreasing the computational complexity of the
algorithm.

A set of particles are usually denoted χ :=
{x(1)

t , w
(1)
t }, . . . , {x

(j)
t , w

(j)
t }, . . . , {x

(M)
t , w

(M)
t } where

x
(j)
t represents the state and w

(j)
t the importance factor or

weight of the particles. Here M denotes the total number of
particles. So, having a set of particles the PF is capable of
following several hypothesis at the same time.

The particles are moved during the prediction step in order
to generate a hypothetical state {x(M)

t } for time t based on
the previous state {x(M)

t−1 }. This step involves sampling from
the state transition distribution p(xt|xt−1). Subsequently, the
importance factors are computed to incorporate the measure-
ment zt into the particle set. The measurement model is used
to predict the ideal noise-free response for each of the LED’s

(X,α)
(u,v)

World

(X,α) (u,v)

World

(X,α)
(u,v)

World

Real Camera Pose Particle Pose Led Pose Fake (virtual) marker

Fig. 2: Particle filters – (i) Initialisation: Each particle observes a
virtual marker in the image plane, (ii) Importance weight: the particles
are weighted based on the difference between the virtual and the real
marker.

3D position projection in the image plane given the state of
each particle. In order to predict the measurement, it is needed
to describe how the measurements are related to the state. The
measurement model is:

ẑzz
(j)
i = hhhi(x̂xx

(j), α̂αα(j)) (2)

where hhh() is the composition of two functions. The first
one is the projection of the 3D location of the LED marker
i by the projection matrix P in Eq. 1. P is parameterised
in location and angle elements of the state vector, that is,
P = P (xxx,ααα). The second function in the composition of
hhh() is the conversion of the resulting vector in homogeneous
representation to normal representation.

The importance factor is given by w
(j)
t = p(xt|z(j)

t).
In order to compute the weight of the particles a gaussian
function is used. This step is one of the most important point
in this work and is illustrated in Figure 2. Imagine that the
position of the LEDs are known and the image of the camera is
measured based on the known position of these LEDs and the
unknown pose of the camera. A set of particles are randomly
distributed around the environment and each particle computes
a fake or virtual image based on its state and the known
position of the LEDs. When the particles are weighted, the
PF compares the fake image of each particle with the real
image by ∆zzz(j) = zzzt − ẑzz(j)

t and the PF uses this value and
a gaussian function to compute the importance factor. Finally,
the resampling step is executed. It refocuses the particle set to
regions in state space with high posterior probability. By doing
so, it focuses the computational resources to the regions that
are more valuable. So, resampling draws with replacement M
particles that are going to approximate the pdf. The probability
of drawing each particle is given by its importance weight.
Thus, it transforms a set of M particles into a new set with
the same size in which particles with low weight are not copied
into the new set and the particles with high weight (close to
the camera pose) are drawn and copied into the new set.

IV. RESULTS AND DISCUSSION

In this section, we give a brief overview of the camera
and sensing platform that we have used for our work, we
then explain our experimental set-up used for performing data
collection and subsequently, evaluate the performance of our
pose estimation algorithm.

TABLE I: Values for the fixed parameters in the experiments.

parameter value
Standard deviation of pixel noise 1 pixel
Frame rate 90 fps (frames per second)
Rotation speed of camera π/2 rad/s
Number of particles 5000

A. Hardware platform and Experimental set-up

a) Hardware platform: The camera is a Fire-iTM Digital
Board Camera. It is a 1/4” CCD camera with a resolution up to
640 × 480 pixels and a frame rate up to 30 Hz. It has a focal
length of 2.1 mm and a horizontal viewing angle of 80.85
degrees. The wireless sensor nodes are of type MyriaNode
V31, they are based on an Atmel XMega micro controller, a
Nordic nRF24L01 radio, and contain by default a number of
LEDs in the visible spectrum.

b) Experimental set-up: In our set-up we use a single
camera, eight fixed sensor nodes serving as radio-controlled
markers, and one sensor node to interface the network to
the PC. We performed an experiment to estimate a circular
trajectory of the camera’s position together with the orientation
of the camera (for more information on the experimental setup
refer to [6]). Instead of physically moving the camera around
the markers we emulate this movement by letting the markers
rotate while the camera is fixed. There are two reasons for
doing this: (1) the experiment is easy to conduct, leading to
greater ground truth accuracy and (2) the effect of changing
lighting conditions is reduced. In a real scenario LED sightings
might be missed, but for the purpose of our experiment we like
to collect a complete data set. The sensor nodes run software
that let the LEDs blink in sequence; at any point in time at
most one LED is flashed. We construct a dense data set by
freezing the camera until all eight LED sightings have been
captured.

B. Evaluation

We evaluate our PF’s performance using a mix of experi-
mental and simulated data. The metrics used are position error,
the length of the vector from the estimated location to the
true location; and angular error, the magnitude of the angle
of the single rotation from the estimated orientation to the
true orientation. The experiments are done by sweeping over
one parameter and fixing all the others. The fixed parameters
always have the same values in all the experiments and are
shown in Table I.

1. Effect of number of LEDs: Figure 3 shows the perfor-
mance of PF for different number of markers (4 and 8) used.
In general, the performance of the algorithm degrades with less
number of markers (ninetieth percentile: position error 22.93
mm vs. 9.12 mm (4 and 8 markers) and angle error 2.85 deg vs.
1.71 deg (4 and 8 markers)). However, we also observed that
when less than four markers were used, particle filters did not
converge. This minimum set of markers are also required by
other batch estimation method such as direct linear transform
(DLT) as used by the computer-vision community [5] [6].

1http://wsn.chess.nl/

0 5 10 15
0

20

40

60

80

100

Position error (mm)

%
 o

f r
ea

di
ng

s
w

ith
 e

rro
r l

es
s

th
an

 a
bs

ci
ss

a

4 LEDs
8 LEDs

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

Angular error (degree)

%
 o

f r
ea

di
ng

s
w

ith
 e

rro
r l

es
s

th
an

 a
bs

ci
ss

a

4 LEDs
8 LEDs

Fig. 3: PF error distribution for different number of LEDs (experi-
mental data).

2. Effect of camera framerates: Figure 4 shows the perfor-
mance of the algorithm for frame rates in the set {30, 90, 300}
fps. There is clearly a tradeoff between accuracy and camera
frame rates: ninetieth percentile position error being 31.2 mm
vs. 6.03 mm (30 fps and 300 fps respectively) and angle error
being 10.8 deg vs. 0.5 deg (30 fps and 300 fps respectively).

3. Effect of measurement noise: Position and angle errors for
different noise levels are shown in Figure 5. By measurement
noise we refer to the difference between detected location of
LED in image plane and its true location in image plane.
Our results show that the particle filtering algorithm is more
robust to noise level as it obtains almost the same results
independently of the noise level.

4. Effect of particle size: Table II shows how the perfor-
mance of PF can be impacted by varying the number of
particles. As we can expect, increasing the number of particles
results in improved results, however this also significantly
increases the computational time. We measured the execution
times per pose estimate (in matlab). PF requires 211.1 ms
(1000 particles), 958 ms (5000 particles) and 3672 ms (20000
particles). We observe that a good compromise can be achieved
between accuracy and computational cost using 5000 particles.

5. Room-scale simulation:
To quantify the effect of our algorithms performance over

large area (room-level) we perform simulations over an area of

0 5 10 15
0

20

40

60

80

100

Position error (mm)

%
 o

f r
ea

di
ng

s
w

ith
 e

rro
r l

es
s

th
an

 a
bs

ci
ss

a

300 fps
90 fps
30 fps

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

Angular error (degree)

%
 o

f r
ea

di
ng

s
w

ith
 e

rro
r l

es
s

th
an

 a
bs

ci
ss

a

300 fps
90 fps
30 fps

Fig. 4: PF error distribution for different frame rates (simulated data).
Metric/Particle density 1000 5000 10000 20000

Position error (mm) 13 6.65 6.4 5
Angle error (deg) 3.25 2.25 1.6 1.55

TABLE II: Particle filters performance (ninetieth-percentile values)
for various particle densities using experimental data.

5 x 5m. The marker distribution is assumed to be random. We
used two different types of camera movement in our simula-
tions (i) camera moving randomly from the center of the arena
to one side of the room and (ii) camera moving in random
fashion over the whole deployment area. In Table III we plot
the results of our simulation studies which are averaged over
100 simulation runs for varying marker density.

Position Error (in mm) Angular Error (in deg)
Marker density 50% conf. 90% conf. 50% conf. 90% conf.

30 21.5 61.8 1.85 5.78
20 37.8 83.5 2.14 7.53
10 67.4 172.95 3.09 11.05

TABLE III: Performance summary of particle filter (using simulated
data). Results averaged over hundred simulations.

V. CONCLUSIONS AND FUTURE WORK

In this paper we described a pose estimation algorithm based
on Particle filters. Our algorithm uses LED sightings gathered
from wireless sensor nodes (WSN) to estimate the pose of the

0 5 10 15
0

20

40

60

80

100

Position error (mm)

%
 o

f r
ea

di
ng

s
w

ith
 e

rro
r l

es
s

th
an

 a
bs

ci
ss

a

0.25 pixels
1 pixel
2 pixels

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

Angular error (degree)

%
 o

f r
ea

di
ng

s
w

ith
 e

rro
r l

es
s

th
an

 a
bs

ci
ss

a

0.25 pixels
1 pixel
2 pixels

Fig. 5: PF error distribution for different measurement noise (exper-
imental).

camera. We evaluated the performance of the algorithm using a
mix of experimental (small-scale) and simulated (large-scale)
data. We showcased the effectiveness of PF with simulated
data for different camera frame rates, varying noise levels and
under different LED visibility conditions. In future, we would
like our particle filter implementation to be compared with
extended Kalman filtering (EKF) approach.

REFERENCES

[1] R. Bencina and M.Kaltenbrunner. The Design and Evolution of Fiducials
for the reacTIVision System. In Proceedings of the Third International
Conference on Generative Systems in the Electronic Arts, Melbourne
(Australia), 2005.

[2] G. Bradski and A. Kaehler. Learning OpenCV. OReilly Media Inc, 2008.
[3] D. L. de Ipĩna, P. R.S.Mendonca, and A. Hopper. TRIP: A Low-Cost

Vision-Based Location System for Ubiquitous Computing . Personal and
Ubiquitous Computing, 6:206–219, 2002.

[4] S. Hay, J. Newman, and R. Harle. Optical tracking using commodity
hardware. In Proceedings of the Seventh IEEE and ACM International
Symposium on ISMAR 2008, 2008.

[5] V. Lepetit and P. Fua. Monocular Model-Based 3D Tracking of Rigid
Objects: A Survey. In Foundations and Trends in Computer Graphics
and Vision, pages 1–89, 2005.

[6] E. Rijpkema, K. Muthukrishnan, S. Dulman, and K. Langendoen. Pose
estimation with radio-controlled visual markers. In In Third International
Workshop on Mobile Entity Localization and Tracking (MELT 2010),
2010.

[7] G. Welch and E. Foxlin. Motion Tracking: No Silver Bullet, but a
Respectable Arsenal. IEEE Comput. Graph. Appl., 22(6):24–38, 2002.

