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Abstract—The uncertainty of radio propagation results in large
errors in positioning systems based on the received signal strength
(RSS). Especially in an indoor environment, the RSS distribution
map, so called radio map, has a very complicated form due
to numerous site-specific parameters. Therefore, modelling the
radio map is a critical task for RSS based positioning systems.
Researchers usually obtain an accurate radio map by measuring
the RSS at a number of reference points. But in this way too
many calibration efforts should be spent to guarantee a fine
radio map accuracy. In this paper, a calibration-free radio map
learning framework is proposed. In this framework, the system
starts with a very simple and coarse radio map model, such as
a radial model with default parameter values. A more accurate
model is then obtained by learning the unlabelled online RSS
data. The Expectation-Maximisation (EM) algorithm is used to
calculate the posterior maximum likelihood (ML) of radio maps.
Besides, we extend the standard EM algorithm by integrating
expert knowledge of radio propagation. By applying the proposed
algorithms in real-world data sets, we demonstrate that an
accurate and robust radio map can be learned without requiring
any calibration data.

I. INTRODUCTION

Indoor positioning systems serve as the basis of a broad cat-
egory of location-based applications such as tracking of assets
and people, logistics, location-aware multimedia services and
many others. So far, satellite navigation systems, such as the
well-known Global Positioning System (GPS), still perform
badly indoors because of attenuation and multipath propaga-
tion caused by buildings and walls. As an alternative, many
researchers developed indoor positioning systems based on
middle or short range wireless infrastructures, such as Wireless
LAN (WLAN) [1], Zigbee [2] and Ultra-Wideband(UWB) [3].

Many of indoor positioning systems make use of received
signal strength (RSS) to infer the location because all off-the-
shelf devices support the RSS reporting. A standard RSS-based
positioning approach consists of two steps: offline training and
online localization/tracking. As shown in Fig. 1, in offline
training step, a so-called radio map function, which represents
the relationship between locations and RSS measurements, is
learned from labelled data. Given the radio map function, the
locations are estimated from online unlabelled RSS measure-
ments in online localization/tracking step.

One of the biggest challenges of RSS-based positioning is
how to obtain an accurate radio map function. As well-known,
the indoor radio propagation is very complicated due to the
reflection, refraction, diffraction and multi-path effect. Its
complexity is highly related to the site parameters of a specific
indoor environment such as the number and positions of walls,

Fig. 1. Standard Procedure of RSS-based Positioning Approaches

Fig. 2. Proposed Positioning Approaches Based on Radio Map Learning

doors or furnitures. Thus, building a radio map function is a
dilemma. A simple radio propagation model needs very few
calibration samples to learn the parameters but often leads to
a coarse accuracy, especially in complicated environments. On
the other hand, if a complex model is used, many calibration
samples are required, which results in a large installation
effort, e.g. from hours to days. Besides, the radio map varies
with time because either the parameters of transmitter or the
parameters of environment change temporally. That means the
calibration process has to be repeated periodically, bringing a
large maintenance cost.

In this paper, a radio map learning framework is proposed.
As illustrated in Fig. 2, the key idea is to first build the
radio map function using a very simple model. This model
has very few parameters which can be learned from several
labelled calibration samples or use default values. Then we
generate many pseudo labelled data from the simple model
and use these data to learn a complicated model. Of course, the
complicated model is now not accurate. In the next learning
step, a lot of online unlabelled data is used to improve the
accuracy. Finally, we obtain an more accurate radio map
function. If the environment changes, e.g., the furnitures are
moved or the new access points (APs) are added, we just need



to re-run the learning step.
The advantage of this radio map learning framework is to

reduce the calibration effort without scarifying the accuracy.
In the initialization step, we can use the mutual measurements
of APs to train the model or directly take the default pa-
rameters. In the learning step, the online unlabelled data are
automatically acquired after the system runs. No calibrations
are necessary any more.

II. PROBLEM FORMULATION

In the paper we use x to denote a location. x is either
a 2-dimensional or a 3-dimensional vector, i.e., x = [x, y]T

or x = [x, y, z]T. L ⊂ R2 or L ⊂ R3 denotes an indoor
location space, i.e., x ∈ L. A radio map function is defined
by R : L → P , where P ⊂ R denotes a RSS space. Given an
AP, a RSS measurement s ∈ P is modelled by

s = R (x) + v, (1)

where v v N (0, σ2
v) denotes the zero-mean Gaussian mea-

surement noise. If I APs are available, we use si, Ri and
vi to denote the RSS measurement, radio map function and
measurements for AP i, respectively.

Given radio map functions, the statistical theory can be
used to solve the localization problem. Assuming that the
RSS measurement from I APs are given by the vector
s = [s1, · · · , sI ]T, where {s1, · · · , sI} are the respective RSS
values from AP1 to APN . Then the posterior probability of
being at the location x given the measurement s is expressed
as p(x|s), which can be written using the Bayesian rule as:

p(x|s) = p(s|x)p(x)∫
p(s|x)p(x) dx

(2)

Since all positions are equally probable, the prior probability
p(x) can be assumed as uniformly distributed. Additionally
{s1, · · · , sI} can be regarded as independent for a given x.
Then (2) can be written as:

p(x|s) =
∏I

i=1 p(si|x)∫
p(s|x) dx

(3)

From (1), we know that the measurement noise is Gaussian,
(3) becomes

p(x|s) =

∏I
i=1

1
σv,i

√
2π

exp
(
− (si−Ri(x))

2

2σ2
v,i

)
∫
p(s|x) dx

, (4)

where σv,i is the standard deviation of measurement noise for
AP i.

With Minimum Mean Variance Bayesian Estimator or Min-
imum Mean Square Error (MMSE) Estimator, an unbiased
estimation is given by

x̂ = E[x|s] =
∫

x · p(x|s) dx, (5)

.
A radio map function can be approximated by various

models. Of course, no model is perfect. The true radio map

is the summation of an approximated radio map and the
corresponding model error, which is expressed as

R(x) = R̃(x,θ) + ∆R̃(x), (6)

where R̃ denotes the approximated radio map like radial model
RRM or multi-wall model RMWM. θ represents the parameter
of R̃. ∆R̃(x) is the model error.

In order to generate an accurate radio map with minimum
calibration effort, we propose a novel radio map learning
framework. This framework is illustrated by Fig. 2. The
key idea is to start with a simple model and then build a
complicated model by using unlabelled online RSS data. Here
we use Rs(x,θs) to denote a simple initial model such as RRM

or RMWM, whose parameter vector θs has a low dimension nθs .
Rc(x,θc) denotes a complicated model such as mass finger-
printing model RFP, which has a high dimensional parameter
θc. The dimension of θc is nθc , satisfying nθc ≫ nθs .

Initially, we need to know the value of parameter θs to
build Rs. We can use default parameters. Or in the scenarios
where the positions of APs are known, we can take mutual
measurements among APs as calibration data to train the
parameter. No matter which approach is applied, no manual
calibration is needed. Besides, by starting with a simple model,
we naturally integrate the knowledge regarding the physics of
radio propagation into the learning framework.

After obtaining Rs, we can generate as many labelled RSS
data as we want. These pseudo labelled data are used to
initialize parameter θ0

c of a complicated model Rc(θ
0
c ). Of

course, θ0
c is not accurate and needs to be corrected. In the

next step, a more accurate radio map Rc(θc) will be learned
from unlabelled online data. If the system or the environment
changes, we just re-learn the new radio map from the old one.

The core of proposed learning framework is to learn the
parameter θc from RSS measurements, given an initial pa-
rameter θ0

c . This is equivalent to a parameter estimation or
system identification problem.

III. EXPECTATION-MAXIMISATION (EM) ALGORITHM
FOR RADIO MAP ESTIMATION

A. EM algorithm

In our learning framework, a radio map is parameterized by
θ. The true value of θ is unknown due to the shortness of sat-
isfactory calibration. So we start with an inaccurate radio map
function R

(
x,θ0

)
, where θ0 is the initial parameter. When

the positioning system runs, the mobile terminal receives RSS
measurements continuously. We denote the RSS vector from
I APs at time k as sk = [s1,k, s2,k, · · · , sI,k]T . The series of
RSS observations is denoted as SK = [s1, s2, · · · , sK ]. The
θ can be estimated by maximizing the parameter likelihood
function

L (θ) = log p (S|θ) . (7)

Since the maximisation of L (θ) is usually hard to be
tracked directly, the Expectation-Maximisation (EM) algo-
rithm [4] is widely used to solve this problem. The EM
algorithm is a powerful method for finding the maximum



likelihood solutions for models with latent variables. It consists
of two major steps: an expectation (E) step, which computes an
expectation of the likelihood by including the latent variables
as if they were observed, and a maximization (M) step, which
computes the maximum likelihood estimates of the parameters
by maximizing the expected likelihood found on the E step.
The parameters found on the M step are then used to begin
another E step, and the process is repeated. The estimated
parameters can be proven to converge to local maxima after a
number of steps [5].

For our radio map learning problem, the EM algorithm
includes the following two steps.

E-Step: calculate

Q
(
θ,θt

)
=

∫
LK

p
(
XK |SK ,θt

)
log p(XK ,SK |θ)dXK ;

(8)
M-Step: find

θt+1 = argmax
θ

Q
(
θ,θt

)
, (9)

where XK = [x1,x2, · · · ,xK ] denotes the hidden locations.
Using Bayes rules, the joint probability p (XK ,SK |θ) can be
expressed by

p (XK ,SK |θ) = p (SK |XK ,θ) p (XK |θ) . (10)

Because XK and θ are independent, p (XK |θ) = p (XK).
And under Markov assumption, RSS measurement sk is only
dependent on its location xk. So (10) can be further expressed
by

p (XK ,SK |θ) =
K∏

k=1

p (sk|xk,θ) p (XK) . (11)

After a number of calculations, the function Q (θ,θt) becomes

Q
(
θ,θt

)
=

K∑
k=1

∫
L
p
(
xk|SK ,θt

)
log p (sk|xk,θ) dxk + E,

where E is a constant, which is calculated by

E =

∫
LK

p
(
XK |SK ,θt

)
log p (XK) dXK . (12)

If the measurement noise is Gaussian, we can derive

p (sk|xk,θ) =
I∏

i=1

1

σv,i

√
2π

exp

(
− (si,k −Ri(xk,θ))

2

2σ2
v,i

)
.

(13)
In M step, the maximisation of Q (θ,θt) is tractable by

letting
dQ (θ,θt)

dθ

!
= 0. (14)

The solution of above equations deponds on the form of
radio map function R(x,θ). A widely used type of radio map
model has a form

R(x,θ) =
M∑

m=1

ϕm(x)rm, (15)

where θ = [r1, r2, · · · , rM ]T is parameter vector and ϕ(x)
represents a basis function. The numerical solution can be
obtained by discretizing xk. In a very special case where the
radio map itself is discrete, i.e., fingerprint model, the basis
function is actually a dirac function, i.e.,

ϕi(xk) = δ(xk − xi). (16)

Then we get the analytical solution parameter rmn , which is

rmn =

∑K
k=1 p (xk = xm|SK ,θt) sn,k∑K

k=1 p (xk = xm|SK ,θt)
. (17)

(17) indicates that given enough observations, the accurate
radio map can be estimated by statistically averaging the
observations. The weight p (xk = xm|SK ,θt) is the posterior
probability given the current radio map and all RSS mea-
surements, which can be calculated using different algorithms
under different assumptions.

• If we assume the current location is only dependent
on the current RSS measurement, i.e., no movement is
considered, we can get

p
(
xk = xm|SK ,θt

)
= p

(
xk = xm|sk,θt

)
. (18)

This posterior density can be calculated by Bayesian
localization algorithm in (2) to (4).

• If we assume the current location is dependent on the
previous measurements, i.e.,

p
(
xk = xm|SK ,θt

)
= p

(
xk = xm|Sk,θ

t
)
, (19)

we can calculate the posterior density by Bayesian filter-
ing.

• Finally, if the current location is assumed to depend on all
the RSS measurements, the problem becomes a Bayesian
smoothing problem. Various algorithm can solve this
problem, like [6]

B. Extensions

1) EM with Constraints: The main problem of EM is that
it can only converge to local maxima of likelihood function.
Especially for high dimensional parameters, there will be
more local stationary points. Therefore, it is very important to
choose an initial point for EM estimation. Here we extend the
standard EM algorithm by using prior knowledge parameters
as the constraints. The benefit of this extension is twofold. On
one hand, parameter constrains can limit the search space for
EM , hence reducing the possibilities of local maxima. On the
other hand, parameter constrains integrate expert knowledge
about radio map. The way of adding constraints to EM
algorithm is to deploy a new cost function instead of the one
in (8),which is given by

Q
′ (
θ,θt

)
= Q

(
θ,θt

)
+ log p (θ) , (20)

where all the information or assumptions about parameter θ
is expressed by the prior density p (θ). Different types of
constraints can be deployed. Here we discuss some of them
as examples.



2) Constraint for Independent Parameters: Sometimes, we
know the range for specific parameters. For example, we know
that despite that it is inaccurate to predict the RSS value at
some point using radial model, the radial model still provides
some constraints. If RSS by radial model is -40 dBm, true
RSS can not be -90 dBm.

In this case, parameters are assumed to be independent, i.e.,

log p (θ) =

M∑
m=1

log p (θm) . (21)

For the sake of simplicity, the parameter range is usually
expressed by Gaussian form. Then we further deduce that

log p (θm) = − (θm − f)2

2σθm

. (22)

For example, we want to use another model f(θm) to constrain
the linear interpolation model in (15). We get

log p (rm) = − (rm − f(xm))2

2σrm
− log(

√
2πσrm). (23)

Now in M-step, we need to maximize the new function as

θt+1 = argmax
θ

[
Q
(
θ,θt

)
−

M∑
m=1

(rm − f(xm))2

2σrm

]
. (24)

3) Constraint for Correlated Parameters: Sometimes, the
parameters are not independent. For example, when we think
of interpolation model, the RSS values at different calibration
points are correlated. The RSS value at one calibration point
can somehow be predicted by its neighbours. This correlation
can be expressed by the following equation

log p (θ) = log p (θm|θn̸=m) + log p (θn̸=m) . (25)

Because in the above equation the second term does not
include θm, so the maximisation step can be further expressed
by

θt+1
m = argmax

θm

[
Q
(
θ,θt

)
+ log p (θm|θn ̸=m)

]
. (26)

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We evaluate our algorithm in a typical office building
depicted in Fig. 3,which has an area of 50mx80m. There are
14 WiFi access points installed . Usually only 3 to 5 access
points can be reached depending on different locations in the
building. We take almost equally distributed 138 reference
points. The RSS values at these points are measured offline
and the mean of measurements are used to build an accurate
yet complicated fingerprinting radio map model. To evaluate
our learning algorithm, we use a radial model and default
parameter as the starting point to derive coarse radio maps.
Then we use the radial model to generate RSS values at 138
reference points as initial parameters. In the next step we
walked randomly in the building and recorded 155 online
unlabelled RSS vectors. By feeding these online data into
our learning algorithm described in previous sections we got
learned radio maps.
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Fig. 3. Test environment

TABLE I
LOCALIZATION RESULTS

Fingerprinting Radial Model EM Learning
Mean of Loc. Error (m) 1.4 12.4 2.27
STD of Loc. Error (m) 0.61 6.35 1.18
Max of Loc. Error (m) 2.9 24.51 4.89

Mean of RM Error - 28.47 5.36

B. Results

We compared the mean of localization errors, standard
deviation of localization errors ,the max localization error and
mean of radio map errors for accurate radio maps by mass
fingerprinting, coarse initial radio maps by radial model and
the learned radio maps. Table I shows the results. We clearly
see that the EM learning algorithm improves the localization
performance remarkably even without any calibration.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated that an improved localization
performance can be achieved by learning the unlabelled online
data, even without calibration. A better result is expected
if some level of calibration is incorporated. We also briefly
discussed the effect of EM extensions. This framework can be
applied for all RSS-based positioning systems. In the future
we will learning other models rather than only fingerprinting
model and also analyse the effect of some chosen parameters.
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