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Abstract—The great success of location-based applications that nonlinearities or non-Gaussian errors in the models caused
operate with GPS, has emphasized the necessity of techndlesy py multipath and non-line-of-sight (NLOS) propagation €on
that make up for the lack of position information in harsh ditions [4]-[6]. In these cases, a suboptimal approach has
environments, as dense urban or indoor areas. Many solutian ' . .
have been proposed, however, none of them has any widespreaot,O be used, such as extgnded Kglman. filters (EKFS)' particle
acceptance. In this case, it is mandatory to have a mechanista  filters (PFs), the expectation maximization algorithm (Ebt)
compare the different proposed systems in terms of performace. a mixture of them. These techniques are commonly assessed
In this paper, we derive the Cramér-Rao lower bound (CRLB) by means of the mean square error, since it reports infoomati
on the minimum mean square error for distance estimation in about both the variance or random error (i.e. the precisiad)

a nonlinear/non-Gaussian localization system. For this puypose, . . . .

we obtain the density function of the received signal strerit the b|a§ or systematic error (i.e. the accuracy) [7]. To dims,
(RSS) and time-of-arrival (TOA) measurements of a signal tat Simulation results are compared to theoretical perforreanc
reaches the MU coming from an access point. The proposed bounds.

model considers both the random error and the bias caused by ~ The Cramér-Rao (CRLB) bound establishes a lower bound
multipath and non-line-of-sight (NLOS) propagation conditions on the mean square error of any unbiased estimator [7].

present in these harsh environments. Since the relationghi . -
among distances in time is likewise considered, the problens This bound has been used as a theoretical benchmark for

addressed within a Bayesian context. The final CRLB is compad the comparison of implemented suboptimal algorithms and
to the mean square error obtained by conventional Kalman as a measure of the effects of introduced approximations

filtering techniques. . o [8]. Therefore, the CRLB is an important design tool used
Index Terms—Crameér-Rao, indoor localization, RSS, TOA. a5 3 predictor of the best achievable performance before
implementing a system. However, the computation of this
bound is not always an easy task, especially in the nonlinear
Nowadays, there are more and more mobile devices on fiiltering case [8]. The reliability of this bound depends @wh
market. So much so, that, for the first time ever, smartphonesll it reflects all the available information.
are outselling personal computers. In this context, laagihn In this paper, we obtain the CRLB for a wireless indoor
based services (LBS) are becoming more and more importédalization system. This system is based on the nonlinear
[1]. These LBS are based on the position provided by GHiBering of the received signal strength (RSS) and the time-
or by the localization of an access point (AP) with whiclof-arrival (TOA) of the signals transmitted between selera
the mobile device is communicating. However, a wide rang&Ps, with known positions, and a mobile user (MU) whose
of LBS requires a similar accuracy in harsh environment, a®sition has to be estimated. To this aim, Section Il present
dense urban or indoor areas. For this type of scenariosg;adevéhe models utilized for the nonlinear filtering problem, and
solutions have been proposed, however, none of them seeatagves a density function for the RSS and TOA measurements
to dominate over the others [2]. Therefore, it is necessattyat includes both random and systematic error. Section Il
to utilize an efficient method to compare them in terms afescribes the recursive method for the CRLB computatioh firs
performance, that is, in terms of both accuracy (how close throposed in [9], whereas Section IV shows the CRLB obtained
estimate is to the actual position) and precision (the bditg by simulation and compares it to the result of applying an
of the estimates due to repetition). EKF to actual RSS and TOA measurements. Finally, Section V
For these harsh environments, conventional estimatidn teanalyzes the conclusions drawn from the presented work.
niques, such as maximum likelihood (ML), maximum a Notations: we denoteN (x; i, P) the Gaussian density fuc-
posteriori (MAP) or minimum mean square error (MMSEJjion of a random vectoX, whereyp is the mean vector, and
obtain poor performances [3]. This is due to the presence Bfis the covariance matrix.

|. INTRODUCTION
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problem. First, we describe the dynamic model that estadadis their actual values (i.e. in this case the error only inctude
the relationship among distances in time. Afterwards, waitle random error). The value af, can be measured or provided
RSS and TOA models for range estimation, and derived thg the manufacturer, however, in realistic harsh enviramse
corresponding densities in order to reflect the systematar e 3, will not fit its actual value, ana.; will have non-zero mean
as well as the random error. (the error includes a bias) proportional to the logarithnthef
We consider a two-dimensional scenario where an Mdistance [4].
moving freely has to be located. The MU obtains a set To evaluate the CRLB, we need the density function from
of M RSS and/orM TOA measurements in discrete timewhich the RSS measurements were generated in the time
instants{tx, k¥ € N}. These measurements come from thstantt;, i.e. we need to know(z;|d[k]). Given a bias),
signals transmitted by several APs with know positiondedal and a distance[k] we have
anchors, to the MU. Then, the position estimation is carried

out in two steps: in the first one, the system estimates the % if zs — (| < 205
distanced(t) to all the access points; in the second step, thep(zs|d[k], bs) = 3)
position is obtained by trilateration [6]. This paper is dised 0 otherwise

on the first step, that is, this paper addresses the problem of o .
estimating the distance§i[k], & € N} to each anchor from Whereds = f.(d[k]) +bs, and f;(d[k]) is given by (2). In this

the sequence of measuremefusk], k € N}. way, the error introduced in the measurements is modeled as
. a truncated zero-mean Gaussian random variable. We teincat
A. Dynamic model the Gaussian distribution to reflect the fact that the méagur

It is clear that the distance between an MU and an AP insy¥stem cannot report RSS values forJli.e. the measuring
given time instant is not independent of the distance batwegystem has a limited range.
them in the immediately previous instant. This correlatoer By assuming that for common indoor distances
time leads to model the evolution in time of the distanceg;,(d[k]) ~ 1 and modeling3; as a Gaussian random
as an analytic function given by itsth order Taylor series variable with mean the actual value and standard deviation
expansion. Calling[k] the state vector formed by the distance s, the bias caused by misestimation can be modeled as,
and some of its first derivatives in a time instamt the N(basOroran)

dynamic model can be approximated by [10] o) et W Ibs| <206, @
p bs = 4
ylk + 1] = Fry[k] + nq[k], 1) 0 otherwise

where Fy, is the transition matrix given by thén — m)th _
. L . whereoy), = 1003.
order Taylor expansion for eachth derivative of the distance. : : :
: .~ Therefore, the density function for RSS measurements is
The error termn,[k] represents the error in the approximation,, . _. o
) . dpbtalned by marginalization,
and is commonly modeled as a zero-mean Gaussian random
variable with a covariance matri®;. [8], [10].
p(zs|d[k]) =

oo

p(2s|d[k], bs)p(bs)dbs )
B. Measurements model -

RSS and TOA information are the most conventional methe result of (5) is a piecewise function where we can
rics utilized to locate an MU, due to the ease of obtainingfStinguish two cases depending on whetheris greater or
their values from the transmitted signals [3]-[6]. Hentmse lower thano,. Figure 1 shows the density function for both
metrics will be the information sources together with th€aS€s.
dynamic model utilized to compute the CRLB. 2) Time of arrival, TOA: The distance between an AP and

1) Received signal strength, RSS The distance between thethe MU can be estimated through a linear transformation of
MU and an AP can be inferred from the RSS values since tifi¢ time that the signal takes to travel from the first to the
distance is one of the factors that most affects the streng@cond node, since the speed of electromagnetic waves in
level. The attenuation caused by the distance between ti{}§ air can be assumed to be constant and known. However,
nodes is known agath-lossand is proportional to this distancet® avoid nodes synchronization, techniques based on round-
raised to a certain exponent, calleath-loss exponent [2]-[5].  trip-times (RTTs) result more attractive [6]. In this cagee
However, the RSS values are likewise affected by a wide ranfgéationship between the distandié], and the TOAz. [k}, has
of unpredictable factors. In logarithmic units we have, an intercept, that is,

zs|k] = as — 1085 1ogy o (d[k]) + ns[k], (2) zr[k] = ar + Brd[k] + n[K], (6)

being z;[k] the RSS valueg; the path-loss exponent, andwhere o, and 3, are constants that can be estimated in a
as IS a constant that depends on several factor like slow aprevious stage to the localization process [6], [11]. Therer
fast fading, gains in the transmitter and receiver anterenad term n.. will be zero-mean Gaussian in the case where there
the transmitted power [3]-[5]. The error term|k], is zero- is a line-of sight (LOS) between the MU and the AP (i.e. this
mean Gaussian in the cases wherg and 3, perfectly fit terms only includes random error), however, will follow
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Fig. 1. The central piece of the RSS density varies depenalingheteros  Fig. 2. The central piece of the TOA density varies dependingvheter
is greater or lower thamy, . o is greater or smaller tham, /4.

a positive distribution (positive bias) in the cases of NLOSistributions [13]. In this case, for each time instapf the

propagation [4], [5]. PCRLB is given by,
Following a parallel procedure to the RSS case, given a bias T 1

b, and a distancé|k] in the time instant;, we have, E{(9(Z[K]) — y[kD(9(Z[K]) = y[k])" } = I}
Nzt o . whereZ[k] denotes all the available measurements up to time
Nertoon) if |z — (o <20 - -

erf(v2) : T =T ty, i.e. the set{z[i],s = 1...,k}. Moreover,g(Z[k]) is an
p(zr|d[k],b-) = . (?) " unbiased estimator of[k] and J,, is the Fisher information

0 otherwise matrix (FIM) obtained as,

where(, = f;(d[k]) + b, and f-(d[k]) is given by (6). I = —E{Vyu[Vyu log p(z[k]|y[k])]) "}

In this paper, the NLOS bias is modeled as a positive uni- ] ) )
form random variable, however, any other positive distidou  Tichasvsky et al. proposed in [9] a method for recursive
can be utilized and the results can be obtained analogou§§mputation of this FIM,

For the uniform bias, Jis1 = D2 - D2(J, + DD, (k> 0) (10)
(b,) ¥ (®) where for the considered linear-Gaussian dynamic model (1)
p\Or) =

0 otherwise D! = FgQ;le

being~, the maximum bias caused by NLOS propagation. D;> = -F{Q;'

As well as in the RSS case, the density function for the D' = DT
TOA measurements is obtained by marginalization, D22 = Q,;l + Di?b
perldlb) = [ plerldlbl, b o)., (@) where

22 T
resulting again in a piecewise function with two differeases Dy = “E{Vyies[Vyirsr logp(z[k + ly[k + 1" }-
depending on whether, is greater or smaller thaf. /4. In SinceDi?b is obtained from (5) and (9), this expression has
Fig. 2 we can observe both cases and the most noticeatdeclosed-formed solution and its result has to be obtaiyed b
effect of the bias when the latter is greater thiam . Monte Carlo integration.

, Moreover, to start the recursion, the initial FIMI,,
Il. CRAMER-RAO LOWER BOUND is obtained by considering the initial densityy,) =
The CRLB provides a lower bound on the minimumy (y,: .., Py) and, thereforeJ, = P;! [8].
achievable mean square error for any unbiased estimator [7]
However, in the addressed localization problem, within the IV. RESULTS
Bayesian context, there is no true parameter. That is, forFor this section, a state vector formed by the distance and it
time-variant systems, what is estimated is a density fancti first two derivatives is considered. Moreover, prior infatmon
Van Trees proposed a posterior CRLB (PCRLB) for thabout these derivatives is incorporated by modeling them as
Bayesian case [12], since this bound is obtained from piosterzero-mean Gaussian random variables with standard daviati



RMSE (m)

4t appears in the EKF result compared to the PCRLB.

V. CONCLUSIONS

3t This paper has analyzed the CRLB for the range estimation
stage carried out before localizing a mobile user. To this, ai
we have derived the density function for the RSS and TOA
measurements received by the MU with respect to several
21 pcrLB.Toa  anchors. This density takes into account both the random
~—~———— error in the measurements, and the bias caused by multipath
and NLOS propagation. The range estimation problem is
""""""" ='=== addressed within the Bayesian framework, by considerieg th
relationship among distances in time. In this case, the CRLB
has to be obtained from posterior distributions. This PCRLB
1 1 ‘ \ 1 J ‘ 1 J can be utilized to compared different algorithms.
0 10 20 3 40 50 60 70 80 In this paper, the PCRLB is obtained from the information
MU position provided by RSS and TOA measurements and is compared to

‘n

= EKF-TOA/RSS
. EKF-
PCRLB-TOAIRSS '~*~im.n, oL |

Fig. 3. Since the EKF is a suboptimal approach, this methas dot reach  the mean square error obtained by an EKF that fuses TOA
the PCRLB obtained for TOA/RSS data fusion. and RSS data. The goodness of this bound is reflected by: 1)

on the one hand, the improvement achieved by the means of
the RSS and TOA data fusion; 2) on the other hand, the error

oo = 0.5 m/s andog: = 0.75 m/s’, respectively. In the introduced by the EKF compared to the PCRLB, since this
dynamic model, a standard deviation @fs) = 1 m/s’ for filter is not the optimal solution when the measurements are
the third derivative of the distance is considered. generated from the developed density functions.

this trajectory, the minimum and maximum distances between

We simulate a random trajectory followed by an MU. In
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