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Secure and Robust Wi-Fi Fingerprinting Indoor
Localization

Wei Meng*, Wendong Xiao**, Wei Ni**, Lihua Xie*
*Nanyang Technological University, Singapore. Email: {meng0025, elhxie}@ntu.edu.sg

**Institute for Infocomm Research, A*Star, Singapore. Email: {wxiao, wni}@i2r.a-star.edu.sg

Abstract—Indoor positioning has emerged as a widely used
application of Wi-Fi wireless networks. Fingerprinting techniques
can provide a low-cost and high-accuracy localization solution
by utilizing in-building communication infrastructures. However,
existing fingerprinting localization algorithms are not resistant
to outliers, for example, the accidental environment changes,
access point (AP) attacks. Another drawback is that traditional
K nearest neighbor (KNN) algorithm in the literature may not
select the candidate reference points (RPs) correctly. In this
paper, we propose a novel environmentally robust and attack
resistant probabilistic fingerprinting localization method. In the
offline phase, the distribution estimation of the signal strength
is performed using probabilistic histogram method. Then in the
online phase, a three-step location sensing method is proposed.
In the first step, a simple and efficient outlier detection method
named non-iterative “RANdom SAmple Consensus” (RANSAC)
is run to detect and eliminate part of APs from which the signals
measured are severely distorted by unexpected environment
effects. In the second step, a novel region-based RP selection
method which works like a “family of probability” is proposed
to improve the possibility of the correctness of selection of the
nearest RPs. In the final step, a simple weighted mean method
is adopted for location determination. In the experiment section,
we demonstrate the proposed method in our lab and find that the
proposed strategies are resistant to outliers and can improve the
localization accuracy effectively compared with existing methods.

I. I

The objective of this paper is to provide solutions to perform
real-time indoor positioning with Wi-Fi techniques. Local-
ization is an important topic in wireless networks. However,
indoor positioning is challenging because of the non-line-of-
sight (NLOS) transmission between emitters and receivers
and the multi-path effect. There are various obstacles, for
example, walls, cubicles, equipments, human beings which
influence the propagating of the electromagnetic waves. As
a solution, fingerprinting indoor positioning techniques can
provides a low-cost and high-accuracy localization by utilizing
in-building communication infrastructures. The fingerprinting
localization techniques can be categorized into two broad
categories: deterministic techniques [2] and probabilistic tech-
niques [3]. Our work lies in the second category.

However, existing fingerprinting localization algorithms are
not resistant to outliers, for example, the accidental environ-
ment changes, access point (AP) attacks. Due to dynamic en-
vironment, the measured fingerprint may deviate significantly
from those stored in the RPs which are near the tag. This
may lead to large localization errors. Another key issue in the

the fingerprinting localization algorithm is how to choose the
candidate RPs to be compared with the tag and then to decide
the region the target may reside in. However, the traditional
K nearest neighbor (KNN) algorithm in the literature may not
select the candidate RPs correctly which results in a large
localization error.

To overcome the above two drawbacks, in this paper, we
propose a probabilistic region-based fingerprinting method to
reduce the outlier effect and improve the localization accuracy.
In the offline training phase, the probability distributions of
the signal strength received by each of the RPs from each
AP are constructed using a probabilistic histogram method.
Then in the online phase, we propose a three-step location
sensing algorithm. In the first step which is named as outlier
detection and elimination, we propose a simple non-iterative
“RANdom SAmple Consensus” (RANSAC) method to detect
and eliminate part of APs from which the signals measured by
the tag are severely distorted by an unexpected environment
effect. In the second step, a region-based reference point
selection method is proposed to improve the robustness to the
changes of the environment. In the final step, the unknown
tag’s coordinate is obtained by using weighted mean method.

II. R R- F M

A. System Overview

The problem of interest is to localize or track the positions
of the tags in the physical area of interest using the Wi-Fi
technologies. We define the signal-strength vector received by
a tag as s = (s1, s2, . . . , sn), where s j, 1 ≤ j ≤ n denotes
the RSS value from the jth access point (AP) and n is the
number of APs in the physical area of interest. There are m
reference points used in the offline training phase, the RSS
matrix received at the ith reference point, 1 ≤ i ≤ m can be
denoted as θi = (θ1, . . . , θn) ∈ Rp×n, θ j = [θ j1 , . . . , θ jp ]T , p is
the number of RSS samples received by a RP from the jth AP.
Please note that some of θ jt may be equal to 0, which means
that at time instant t, the RP does not detect the signal from
the jth AP.

Our system can be divided into two phases: (1) offline phase
in which we perform the distribution estimation and (2) online
phase, in which we use a three-step location determination
technique to infer the tag’s location.



B. Offline Training Phase

During the offline phase, at each reference point with known
location, the RSS measurements from access points (APs) are
intensively sampled. Then we plot histograms to approximate
their density functions. In [3], the authors have a result that
probabilistic histogram method can lead to slightly lower
location error on the average than other kinds of probabilistic
method, such as nearest neighbor method and kernel method
[3]. The histogram method is closely related to discretization
of continuous values to discrete ones. For our case, we
have one-dimensional variables and that the minimum and
maximum of the RSS values are known. The method requires
that we fix a set of bins, i.e., a set of non-overlapping intervals
that cover the whole range of the variable from the minimum
to the maximum. The number and widths of the bins are two
adjustable parameters which will affect the resulting density
estimate. For simplicity, we use equal-width bins. Generally
the distribution of RSS values does not follow the Gaussian
distribution due to the multi-path effect. The probability of
each bin is calculated as follows:

P(RS S ∈ ith interval) =
Count(ith interval)

Size of Training Data
.

(1)

C. Online Phase

In the online phase, we propose to use a three-step location
sensing algorithm.

TABLE I
O 

Rank AP1 AP2 . . . APn

1 ID11 ID21 . . . IDn1
2 ID12 ID22 . . . IDn2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

m ID1m ID2m . . . IDnm

1) Outlier Detection and Elimination: We assume that at
each time instant, only the signal wave from a small portion
of the access points (APs) are distorted dramatically due to
the accidental environment changes, access point (AP) attacks.
This is reasonable in most cases of real applications. On the
other hand, it is known that if signals from most of the APs
are influenced, the fingerprinting method does not work no
matter whether the deterministic or probabilistic approaches
are used. The main objective of this part is to find out and
eliminate part of APs from which the signals measured by tags
are severely distorted by the unexpected environment effect.
As introduced before, in the online phase, the signal-strength
vector received by a tag is s = (s1, s2, . . . , sn), where n is
the number of the APs. Then we map these RSS values into
the possibility measure according to (1). The sorting of these
possibilities for APs is listed individually as shown in TABLE
I, where each column presents the rank-list for an AP and IDi j

denotes the ID of the reference point which has jth largest

value for ith AP. From the table, for each AP, we search the
coordinates of the reference points which are in rank 1-q and
then calculate their center point’s coordinates ri, 1 ≤ i ≤ n as
follows:

ri =
1
q

q∑

j=1

pIDi j , (2)

where pIDi j denotes the coordinates of the reference point
which has ID number IDi j as presented in TABLE I. Please
note that q should be chosen carefully which can not be too
large. Empirically, we choose q equal to 2 in our experiments.

After obtaining ri, 1 ≤ i ≤ n, we run the outlier detection
algorithm to find out and eliminate part of APs from which
the signals measured by the tag are severely distorted by the
unexpected environment effect. If the outliers exist, then some
points (outliers) ri, 1 ≤ i ≤ n may have larger distances to most
of the other points (inliers) as shown in Fig. 1.

The main idea of the outlier detection algorithm is adopted
from “RANdom SAmple Consensus” (RANSAC) [4] which is
widely used in image processing area. For our case, we use a
simplified non-iterative RANSAC algorithm to save the time in
signal processing. Alternately, we can use RANSAC or multi-
level RANSAC, however, their computational complexities
are high and may not be appropriate for online tracking
applications. The pseudocode of outlier detection algorithm
is addressed in Algorithm 1. Two parameters T and w need to
be chosen carefully where T denotes the distance threshold for
determining when a datum fits the model and w denotes the
number of close data values required to assert that a model fits
well to data. T can not be small or large, in our experiments,
T is set to around 5 meter. For the parameter w, it should be
no less than n/2 (n is even) or (n + 1)/2 (n is odd).
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Fig. 1. Outlier Detection

Fig. 2. Region-based reference points selection.

2) Region-based Reference Points Selection: After elimi-
nating the signals measured by reference points (RPs) and
the tracking tag/target from the APs from which the outliers
happened, we will select some candidate RPs to be compared
with the tag. In the literature, the most commonly used method
is K-nearest-neighbor (KNN) method. The KNN method is
based on the assumption that if the reference point j is near



Algorithm 1: Outlier Detection
Input: [i] ri, 1 ≤ i ≤ n as in (2). [ii] Model: Euclidean
distance ‖ri − r j‖2, 1 ≤ {i, j} ≤ n, i , j. [iii] T , the distance
threshold for determining when a datum fits the model.
[iv] w, the number of close data values required to assert
that a model fits well to data.
Output: The IDs of the APs from which the
measurements by the tracking tag are seen as outliers.

1: Initialization: t = 0.
2: for i = 1 : n do
3: for j = 1 : n, j , i do
4: if ‖ri − r j‖2 ≤ T then
5: t ← t + 1
6: else
7: t ← t
8: end if
9: end for

10: if t ≥ w then
11: Measurement from AP i is an inlier
12: else
13: Measurement from AP i is an outlier
14: end if
15: end for

the tag, then the Euclidean distance in signal strength between
them is small, and vice versa. Also the KNN method selects
each candidate RP individually. Due to fluctuations in RSS
measurements, this may result in that the chosen RPs may not
be the actual K points which are nearest to the tag as shown
in Fig. 2.

To solve this problem, we develop a region-based refer-
ence points selection method which works like a family of
probability instead of single probability as in KNN-based
method, to improve the robustness and accuracy. We form
N reference points (N could be 4, 6, etc.) into a group,
and each group of reference points covers a region in our
Wi-Fi indoor positioning test-bed. From the viewpoint of
fingerprinting mechanism, each fingerprint is a region-based
group of reference points in our approach, instead of an
individual reference point. To determine which fingerprint best
matches the tag’s RSS measurements, we calculate the sum of
probability (SOP) in probability space, and the region with
the minimum SOP will be selected as the matched region (see
Fig. 2). The SOP is calculated as follows:

SOP =

N∑

i=1

Pi =

N∑

i=1

n′∑

j=1

Pi j, (3)

where N is the number of RPs in the group and n′ denotes
the number of APs left after outlier detection. Pi j denotes
the probability value mapped to ith RP and it is calculated
according to (1) where RS S = s j. Note that in (3), we use
sum of probability instead of product of probability (POP).
This is mainly because that in some case, Pi j may be equal to

0 which makes the product equal to 0.
Actually, in the candidate RPs selection process, we do not

need to search the data through all the RP group list. We can
just choose some groups in which the rank 1-4 reference points
in TABLE I are involved which may speed up the localization
process.

3) Location Estimation: The final location determination
method is simple and we assume that the tracking tag’s
coordinates is a linear combination of the N reference points’
coordinates (x1, . . . , xN) in the group selected in the last step.

x̂0 =

N∑

i=1

wixi, (4)

where wi = Pi∑N
i=1 Pi

, Pi =
∑n′

j=1 Pi j as shown in (3).

III. E R

Fig. 3. The layout of the experimental test-bed.

We evaluate the performance of our proposed environmental
robust region-based fingerprinting algorithm using experimen-
tal studies in our lab environment as shown in Fig. 3. We
assume each access point’s communication radius is sufficient
to cover the whole area of the network. The experiment setup
is as follows. In the whole area, 6 access points (APs) are
placed at different positions. Signal strengths are sampled at
30 reference points (RPs) and are stored into the calibration
database. At each reference point, the sampling frequency is 10
Hz and the number of samples are about 1000. The distance
between two neighboring RPs are set to about 2m. Then in
the online phase, a Wi-Fi tag is used as the tracking target.
It measures a sample vector of RSSs from APs at its position
and then the sample will be sent to a central server. We move
it along a track in unit step, and calculate its position estimate
at the center server. The two parameters used in the outlier
detection, T and w are set to be 5m and 3 respectively. The
performance metric of our experiment study is defined as the
position estimate’s error, i.e., error = ‖x0− x̂0‖2, where x0 and
x̂0 denote the tracking tag’s real coordinates and the estimated
one.

A. Impact of Width of Bins in Probabilistic Histogram

In our offline phase, we use a probabilistic histogram
method to estimate the distributions of signal strength mea-
surements. As we point out in section II-B, the width of bins
is an important parameter which affects the final localization
accuracy. In this part, we change the width between 1dB and
2dB and keep the number of reference points and access points
equal to 30 and 6 respectively. The localization results of



using different widths of bins is shown in Fig. 4(a). As seen
from the figure, we can find that the performance of the 2-dB
width histogram method is better than its 1-dB counterpart.
The reasons for this result is that the width of bins is related
to the interpolation of the distributions between a number of
the most probable locations which is a challenging topic in
the fingerprint-based localization problems. 2dB width of bins
in some extent help each reference point cover larger area
of signal strength distribution and not just the distribution of
its own position. This is because the signal strength varies at
different points in the sensing field.

B. Outlier Rejection

As we know, outlier, for instance, accidental environment
change and AP attacks, is a big issue which makes the
fingerprint based indoor localization difficult. In order to see
how well our proposed method works in harsh environments,
we artificially make two APs attacked. Then we run our
experiments include and exclude the outlier rejection algorithm
respectively. The result is shown in Fig. 4(b). As seen from
the figure, with outlier rejection algorithm, the localization
performance is better.
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Fig. 4. Cumulative percentile of error distance for (a) width=1dB and
width=2dB; (b) with and without outlier detection.

C. Impact of Density of RPs and APs
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Fig. 5. Cumulative percentile of error distance for difference densities of
RPs and APs.

In our experiments, we also change the density of the
reference points. The localization result is shown in Fig.
5(a). The performance of using 30 RPs is slightly better than
which using 20 RPs. However, at some points, the localization
accuracy of using 20 RPs may be better than that of using 30
RPs. This is reasonable because with lower density of RPs, the
probability of correct selection of group of nearest RPs will
be higher. In order to investigate the impact of density of APs.
Inversely, in our experiments, we shut down one AP, and with

5 APs left. Then one parameter used in outlier detection w is
changed to be 2. The localization performance is tested and
the result is shown in Fig. 5(b). From the figure, we can see
that with higher density of APs, the localization performance
is better. However, our method is not sensitive to the density
of the APs. According to our experience, 4-5 APs is enough
for the accuracy requirement of our clients.

D. Comparison with other methods
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Fig. 6. Cumulative percentile of error distance for different methods.

In the experiments, as a benchmark, the performance of
the proposed probabilistic region based method is compared
against KNN method, deterministic region based method
and Gaussian based probabilistic method. The performance
comparison result between four different methods is presented
in Fig. 6. From the figure, we can find that the proposed
histogram region-based method has the best performance.
Usually, a probabilistic method is better than a deterministic
method. The reason for the fact that the proposed histogram
method is better than Gaussian based probabilistic method is
that in some cases, the real distribution of the signal strength
has a significant bias with the Gaussian distribution. From the
figure, we also find that deterministic region based method
is slightly better than the KNN method. This is because that
region based reference point selection method is more robust
to the environment changes than KNN method.

IV. C

In this paper we have proposed an secure and environ-
mentally robust region-based fingerprinting method for indoor
positioning in Wi-Fi wireless networks. In the offline phase,
a probabilistic histogram method is adopted to estimate the
distribution of signal strength and then a radio map is built.
In the online phase, we utilize a Wi-Fi tag to collect RSS
information and localize the tag by using a three-step loca-
tion sensing method. Implementation results showed that our
proposed technique leads to a better localization performance.
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