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Abstract—In this paper, first we look at the problem of
estimating the transformation between an inertial measurement
unit (IMU) and a calibrated camera, based on images of planar
mirror reflection (IPMR) of arbitrary feature points with un-
known positions. Assuming that only the reflection of the feature
points are observable by the camera, the IMU-camera calibra-
tion parameters and the position of the feature points in the
camera frame are estimated using the Sigma-Point Kalman filter
framework. In the next step, we consider the case of estimating
varying camera intrinsic parameters using the estimated static
parameters from the previous stage. Therefore, the estimated
parameters are used as initial values in the state space model of
the system to estimate the camera intrinsic parameters together
with the rest of the parameters. The proposed method does not
rely on using a fixed calibration pattern whose feature points’
positions are known relative to the navigation frame, additionally,
motion of the camera which is mounted on the IMU is not limited
to be planar with respect to the mirror. Instead, the reflection
of the feature points with unknown positions in the camera
body frame are tracked over time. Simulation results show
subcentimeter and subdegree accuracy for both IMU-camera
translation and rotation parameters as well as submillimeter
and subpixel accuracy for the position of the feature points and
camera intrinsic parameters, respectively.

Index Terms—IMU-Camera calibration, IPMR, Sigma-Point
Kalman filter, camera intrinsic parameters.

I. INTRODUCTION

Inertial navigation systems (INS) use a combination of
motion sensors and rotational sensors to provide the position,
orientation, and velocity of moving objects. At the core of
each INS, there is an inertial measurement unit (IMU) that
provides angular velocity and specific force, which yields
attitude and position. Due to the integration drift, the position
and the attitude must be periodically corrected by input from
complementary sensors. One of the most common alternative
sensors is radio receivers, such as a global positioning system
(GPS) for outdoor positioning. Integration of vision sensors
with INS is another alternative that can be used for outdoor
as well as indoor positioning. However, aiding the INS with
a vision sensor such as a camera requires sensor-to-sensor
relative transformation to be known; disregarding such an
offset in the system will introduce un-modeled biases that may
grow over time. Currently, several in-lab calibration techniques
have been proposed to determine the 6 degrees-of-freedom
(DoF) transformation between the IMU and the camera co-
ordinate frame; however, they are mainly based on using a
static checkerboard calibration pattern with a known position

in the navigation frame. For instance, in [1] IMU-camera rel-
ative rotation and translation have been estimated separately;
however, the correlations between the rotation and translation
parameters are discarded by the separate calibration. In [2],
calibration parameters are estimated by the extended Kalman
filter through tracking static points with known positions in
a calibration pattern; furthermore, the observability of the
nonlinear system is studied by employing the observability
rank condition. A similar nonlinear system is studied by [3], to
derive the relative translation and orientation between the IMU
and a spherical camera. Using the standard camera calibration
pattern, a weighted quadratic cost function has been minimized
within the standard gray-box system identification framework.

The main contribution of this paper is to present a novel
algorithm for estimating the 6-DoF IMU-camera coordinate
transformation via a Sigma-Point Kalman filtering framework;
unlike the current calibration approaches, our method does not
rely on a direct view of a static calibration pattern with known
feature points position. Arbitrary feature points are selected in
the camera body where no prior knowledge is assumed on
the pose of the feature points relative to the camera optical
center. Then, the calibration procedure tracks virtual views of
the arbitrary feature points in a planar mirror. For this reason,
the camera along with the IMU is moving in front of the
planar mirror where the IMU is used to support the camera by
providing angular velocity and specific force. Contrary to the
existing approach [4] [5], no restriction in the IMU-camera
movement is considered except the existence of the feature
points in IPMRs.

A plane mirror is a mirror with a planar reflective surface.
In this case, an image of an object in front of it appears to
be behind the mirror plane. In fact, this image is equivalent to
one heing captured by a virtual camera that is located behind
the mirror; additionally, the position of the virtual camera is
symmetric to the position of the real camera. In our case, the
reflection of the camera in the plane mirror is used for tracking
virtual feature points in the IPMRs.

Using IPMR in [6], the transformation between the camera
and the body frame of a robot is determined through the
maximum-likelihood estimation framework. However, their
method is based on tracking feature points whose position
relative to the body frame is assumed to be known in advance.
Additionally, it is claimed that no prior knowledge about
the robot motion or the mirror configuration is considered;
since their method is not based on the epipolar geometry [7],



considering such assumptions can be applicable. Considering
the epipolar geometry, which relates a pair of images through
the fundamental matrix, for the IPMRs is also possible under
a certain constraint that limits the camera movement to be
planar. In the planar motion, the rotational axis should be
normal to the plane containing the direction of translation [4].
As a result the fundamental matrix between IPMRs has 6-
DoF [7]. For instance in [8], the epipolar geometry of IPMRs
is studied to estimate the pose of a real camera moving in
front of the mirror. However, the rigid displacements between
the virtual views are restricted to be planar.

The above methods all require intrinsically calibrated cam-
eras, which can be achieved using a fixed calibration pattern.
However, the availability of the IMU signal is one advantage
of such a system that can be addressing the problem of camera
self-calibration. For instance, in [9], these parameters are
estimated using homographies, on the assumption of known
relative rotation from an external sensor. Due to the camera
intrinsic parameter estimation, in the second part of this paper,
a camera-self calibration approach is introduced which uses
the same IMU-camera and planar mirror structure. Using the
estimated IMU-camera calibration parameters and pose of the
target feature points in the camera body frame, the camera
intrinsic parameters are estimated by IPMRs. The paper is
organized as follows. The process and measurement models,
which lead to the state-space equations of the system, is
derived in Section Il. The structure of the used Sigma-point
Kalman filter algorithm is presented in Section I1. The camera
intrinsic parameter estimation is studied in Section Ill. In
Section 1V, the performance of the proposed method and
simulation results in different scenarios are examined. Finally,
the conclusion of the study is summarized in Section V.

In the following sections scalars are denoted by lowercase
letters (s), vectors by bold letters (f), and matrices by bold
capitals (K).

Il. SYSTEM DESCRIPTION

The goal of our proposed algorithm in this section is to
estimate the position and orientation of the camera coordinate
frame {c} relative to the IMU frame {b}, where the camera is
rigidly mounted in the IMU body frame. In order to simplify
the treatment with different coordinate frames, we assume that
the navigation frame {n} is located in the center of the mirror
coordinate frame.

A. Time evolution of the system

In order to estimate the parameters in the Sigma-Point
Kalman filter framework, we first describe the total system
state vector as

X — [XinsT ximucT XfT]T c R21+3M, Q)
with
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The considered state variables in the INS system are repre-
sented by xS, where pp and vp are describing the position
and velocity of the IMU in the navigation frame, respectively.
qp is the unit quaternion representing the rotation from body
frame to navigation frame, and b, and by are the bias vectors
affecting the accelerometer and gyroscope measurements, re-
spectively. x™C depicts IMU-camera calibration parameters,
containing the translation from camera to the body frame pE,
and the unit quaternion representing the rotation from camera
frame to body frame q&. Finally, x contains pose of the
arbitrary static feature points located in the camera body frame
{n€IM € R3. The time evolution of the INS state and the
IMU-camera transformation [2] can be described by
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where o(t) is the rotational velocity of the body frame and
[]x denotes the skew-symmetric matrix representation of the
cross product operation [10]. The IMU and gyroscope bias
increments, ng and ng,, are modeled as white Gaussian
noises. The output measurement signals of the accelerometer
fm and the gyroscope wn, are modeled as

fm(t) = RA(1)(a"(t) —g") +ba(t) +ne(t) @)
Om(t) = @(t) +bg(t) + Ne(t)
where RR is the direction-cosine matrix [10], nf, ng, are
modeled with Gaussian distribution, and g" is the gravitational
acceleration expressed in the navigation frame.
B. Discrete-time process model
The discrete-time error state space model is described by

SPpk1 = OPpy +dtovy (4)
8Vhi11 = OVp -+ dt[RD Fmid « 56+ AR (5T + 1)
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where Iig is the measurement rotation matrix, and the equa-
tions have been derived based on the standard additive error
definition for the position, velocity, and biases (X~ x+ 6x) and
quaternion error for the rotational angles (6q ~ [1 %"’]T); the
advantage of quaternion error definition is the direct use of
error angle vectors 66 and ¢ for the gy and a2, respectively.
According to the state vector model (1) and the discrete-time
error state space model (4), the total error state vector is
written as

SX = [5XinST 5XimucT 6XfT]T (5)
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Fig. 1: System sensor structure in front of the planar mirror

with
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Hence, the state-space model of the discrete time process is
given by
X1 = fi(8xk,ni) € RFHM (6)

where the process noise n = [nd, nl, ni, ni 7 is
assumed to be time invariant.

C. Mirror reflection transformation

To define the discrete time measurement model of the
system, first of all, we need to derive the geometry of the
reflected point in the planar mirror. Without loss of generality,
a standard right-handed Cartesian coordinate system is used
for all the coordinate frames. The navigation frame, {n},
is located in the center of the mirror coordinate frame, see
Figure 1, such that its xy plane is the reflective surface. For the
sake of simplicity, equations are derived for only one feature
point 7; which is selected arbitrary in the camera body frame.
Defining the reflection of this point in the planar mirror by 7,
they can be related in the navigation frame via the reflection
matrix A as

0 0
1 0 |. (7
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The geometric relation between the pose of z; and 7; can also
be described in the camera coordinate frame by considering
the trasformation between the camera and the navigation frame
as

m = Ry +pp (8a)
¢ = RO + Ph- (8b)

By substituting (8a) and (7) into (8b), we have
71 = REARG (7€ — pf) + pf. 9)

Inserting the IMU-camera transformation, R€ = R2'RE and
pY = pp+ RE"pB in (9) and using the fact that p = —RS" p¢,

the vector 7 can be rewritten as
. T T T
7 =R¢ RRA(RS Rn)'m° —Rg Ry(ls—A)pj

— (13— R2 REA(RE'RE) )R pb. (10)
Using the unit vector along the z axis, e, =[0,0,1] ", the matrix
A can be decomposed as A = I3 —2ee), where I3 is the
identity matrix. By replacing A, (10) can be simplified to

#¢ = n°— 2R% RBe,e,” (RS RO+ pp+RY pY). (1)
Finally, the position of the reflected feature points in the
camera coordinate frame, which will be used in the camera
projection model I1-D, is described as a function of our defined
states (1). The main advantage of this model is that instead of
using 7 that maybe change from image to image while camera
is moving, r° is used which is fixed in the camera body frame
and can be estimated efficiently over time by the Kalman filter
framework. This implies, although no prior knowledge about
the pose of m; is assumed, it should be static relative to the
camera and visible in each captured image.

D. Measurement model

When the camera along with the IMU is moved in front of
a plane mirror, the body frame angular velocity and specific
force are measured by the IMU. Meanwhile, the camera
records IPMRs. The projection of the reflected feature point
¢ to the image plane, based on the pinhole camera model [7],
can be represented by
N T 1
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where vj is the feature-measurement noise with covariance
matrix R; = G\?Iz, and K is the camera intrinsic matrix,
assumed to be known. For M observed reflected feature points
described by (11), the discrete-time measurement model of the
system at the kth time instant is

57 = hi(8XIS, XM, 5x) + vi € R2M, (12)

Using the Sigma-Point Kalman Filter framework [11], the
statistics of the random variables under the nonlinear process
model (6) and measurement model (12) are calculated. Addi-
tionally, this technique alleviates the requirement to explicitly
calculate Jacobians, which for complex functions, such as (11),
can be a difficult task or numerically unstable. The high-
rate IMU signal measurement propagates the state and the
covariance matrix before a new measurement is received. From
each new captured image the reflection of feature points are
detected, then the state estimates and the covariance matrices
of the system are updated.

I11. CAMERA INTRINSIC PARAMETER ESTIMATION

The proposed approach in Section Il provides an accurate
estimate of the static IMU-camera calibration parameters and
the positions of the feature points for a calibrated camera.



However, there are cases in which the intrinsic camera param-
eters change (e.g, the focal length). In this section, the previous
system structure has been extended to estimate the varying
camera intrinsic parameters using the estimated IMU-camera
calibration parameters and feature points positions as an initial
value in the same Sigma-Point Kalman filter framework.

The camera intrinsic matrix K is represented as

ki s pu
0 0 1

where ky and ky are the magnifications in the two coordinate
directions of the image, s is a skew parameter corresponding
to a skewing of the coordinate axes, and py and p, are
the coordinates of the principal point [7]. Concatenating the
camera intrinsic parameters X* =k, k, pu pv §' to
the system state vector (1), the extended system state vector
can be written as
insT  yimucT 7 chT]T c R26+3M

X=X (14)

Considering 6x5 ; = 6x{° in the discrete time error state space
model, the total error state vector is expanded to

Sx=[ox™" sxmel gxflosx®T|T. (15)

Hence, the discrete-time measurement model of the sys-
tem (12) will be a function of 6x® as well as the rest of
the parameters (5).

IV. PERFORMANCE EVALUATION

The proposed calibration approach has been evaluated by
Monte-Carlo simulations for three selected feature points,
which is the minimum number of required points for defining
a plane. Table | and Il summarize the final estimated values
and the standard deviation of the error (o) for IMU-camera
6-DoF and the position of feature points. Simulation results
show that the proposed estimation method is able to reach
subcentimeter and subdegree accuracy for the IMU-camera
rotation and translation as well as subcentimeter errors for the
position of feature points in the camera body frame. The initial
and final estimates of the camera intrinsic parameters using
the estimated value of the IMU-camera 6-DoF and feature
point positions as the initial values in the extended Sigma-
Point Kalman filter are shown in Table IlI.

TABLE I: Initial, final, and error statistics of the IMU-camera transformation,
for 100 Monte Carlo simulations and calibrated camera.

TABLE llI: Initial, final, and error statistics of the camera intrinsic parameters,
for 100 Monte Carlo simulations.

ky+ ofpixel] | koo [pixel] | pyxo[pixel] | py+o[pixel] | s+ o[pixel]
Initial | 833.33+100 | 833.33+100 2+100 8+100 3+100
Final | 833.93+1.26 | 833.94+1.33 | 273+0.92 7.74+0.95 3.314+0.50

V. CONCLUSION

An approach for IMU-camera self-calibration has been
proposed for estimating the 6-DoF IMU-camera transforma-
tion. The method does not require a fixed calibration pattern
with known feature point positions. Instead, our calibration
method is based on IPMR of the feature points that are
fixed in the camera body frame where no prior knowledge of
their positions is assumed. Relating the IPMR with the IMU
measurements, we introduced a model which has been used
in the Sigma-Point Kalman filter framework to estimate the
IMU-camera calibration parameters as well as the position
of the feature points. Moreover, no restriction for the IMU-
camera movement in front of the planar mirror is considered;
however, the reflection of the feature points in the plane
mirror should be visible in the images.Additionally, using the
estimated parameters, we show that it is possible to estimate
the camera intrinsic parameters in the same Sigma-Point
Kalman filter approach extended with the camera calibration
matrix parameters.
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