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Abstract—We present an approach for the localization of
passive receiver nodes in a synchronized communication network.
The positions of the nodes are arbitrary and unknown. The only
source of information is the time differences of arrival (TDOA)
when environmental sound or ultrasound signals are received.
The discrete signals occur at unknown positions and times, but
they can be distinguished. The goal is to determine the relative
positions of all receiver nodes and implicitly the positions and
times of the environmental signals.

Our novel approach solves iteratively a non-linear optimization
problem of time differences of arrival by a physical spring-mass
simulation. Here, our algorithm shows a smaller tendency to get
stuck in local minima than a non-linear least-squares approach.

The approach is tested in numerous simulations and in a real-
world setting where we demonstrate and evaluate a tracking
system for a moving ultrasound beacon without the need to
initially calibrate the positions of the receivers. Using our
approach we estimate the trajectory of a moving model train
with a precision in the range of centimeters.
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I. INTRODUCTION

Localization using infrastructures like global navigation
satellite systems or GSM multilateration depends on the avail-
ability of external systems. These can fail due to environmental
conditions (indoor locations, in the forest, on mountains), or
they could be deactivated for political reasons. Besides, most
infrastructural location services are too imprecise for indoor
localization.

Our anchor-free approach does not rely on external infra-
structures. We address the problem of self-localization of four
or more receivers using the time differences of arrival (TDOA)
of acoustic signals from the environment – of which we do
not know the positions of origin. A sound source could be a
finger snapping, coughing, or the tick sound of a metronome.
All we assume is that we can distinguish the sounds.

TDOA data of audible sound can be obtained by discrete
timestamping [1], [2] or by cross correlation of signals [3].
Ultrasound is used in [4], [5]. Usually, the receivers’ positions
are known. Then, estimating a sender’s position using time
differences of arrival can be addressed in closed form equa-
tions or by iterative approaches. Moses et al. use TDOA with
additional angle information to locate unknown sender and
receiver positions [6]. This would require expensive receiver
arrays or directed receivers.

Localization without anchors and relying only on TDOA
can be solved if assumptions on the signal positions are made,
e.g. the signals originate from far away [2], [7]. A very elegant
approach was proposed in [8] where the special case of ten
microphones in space is solved in a linear approach.

Close to our problem setting is the approach of Biswas
and Thrun [1]. No assumptions about the signal positions are
required and only TDOA information is used to iteratively
refine a Bayesian network. However, the correct solution
cannot be found in every case.

We present an iterative approach based on a spring-mass
simulation to solve the problem of anchorless localization with
only TDOA information with a probability of more than 99 %.

II. ITERATIVE CONE ALIGNMENT

We consider the problem of self-localization of receivers us-
ing only TDOA information from unknown signal sources. In
a communication network n receivers are located at unknown
positions Mi (i = 1, . . . , n) in p = {2, 3}-dimensional Eu-
clidean space Rp. Now m signals occur at arbitrary positions
Sj (j = 1, . . . ,m) at unknown time points tj . The wavefront
of every signal propagates with constant signal velocity c,
starting at the signals’ origins Sj at time tj . The signals arrive
at the receivers at time points Tij which can be measured. The
propagation is described by the constraint equation

c (Tij − tj) = ||Mi − Sj || . (1)

An equation system is formed by the equations for n
receivers and m senders. For a minimum number of signals
and receivers the system is unique or overdetermined. When
we distribute the equations we get squared and mixed terms.
According to [2] and [8] it does not seem likely to find efficient
solutions to the problem in general.

Non-linear approaches can solve the problem. However, in
some cases the iterative methods run into local minima from
which they cannot recover, even with repeated attempts [1].

We now present our novel Cone Alignment algorithm which
is based on a spring-mass simulation. We quantify the chance
of running into local minima and we use our algorithm
to increase the probability of solving the problem. In the
following we omit the indices i, j for clarity.

From Eq. (1) we know that T = t+ 1
c‖M−S‖. The equation

describes a cone in p+1-dimensional space (Fig. 1) where the
signal time t is added as a dimension. The vector (M, T ) is
the apex of the cone, (S, t) describes a signal at position S
at time point t. If for all receivers M1, . . . ,Mn and signal
sources S1, . . . ,Sm these equations are satisfied we receive a
possible solution of the given problem. Of course, this does
not necessarily imply that we found the correct solution as the
problem might be underconstrained.

We use an error function to describe the potential energy of
springs. We define Φ((D, tD)) := c t− ‖D‖.
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Fig. 1. Cone representation of Eq. (1) in 2D space. The signal source S
resides offside the cone surface of receiver M and therefore it is not valid
and Φ 6= 0. The direction vector N0 intersects the cone to restore validity.

If the error function Φ gives a non-zero value, which we
call an invalid location, one can change both the position and
time (S, t) of the signal source and the position vector M of
the receiver by moving it in p+1-dimensional space in order to
recover a valid position. Receiver time T is fixed by definition.
We define:

N :=

(
S−M

||S−M||
,

1

c

)
(2)

The normalized direction vector N0 := N
‖N‖ describes the

shortest path from S to the cone surface of M in respect of
signal velocity c.

For the case that t > T + 1
c‖M−S‖ and thus N0 does not

intersect the cone, we choose N0 := (~0,−1) pointing along
the time axis ensuring an intersection.

By construction there is a scalar d ∈ R such that
Φ((M, T ) − (S, t) + dN0) = 0. d equals the distance along
N0 between (S, t) and the cone surface (Fig. 1). It can be
computed by

d :=

(
1− Φ((M, T )− (S, t) + N0)

Φ((M, T )− (S, t))

)−1
. (3)

We calculate a force to minimize d using the spring equation
F = −k dN0 where k is a constant describing the spring
stiffness. Applying F to every receiver particle and −F to
the corresponding signal particle changes the locations and
time points to minimize the spring extension and hereby the
potential energy of the spring-mass sytem. In the case of
success all relations become valid.

We manipulate the signal and receiver positions with a
simulation of this spring-mass system. It is based on parti-
cles which are tuples (xt,vt,m) representing the receivers
and signals in p+1-dimensional space at discrete simulation
times t. They have physical properties position x, velocity v
and mass m and obey Newton’s law of inertia.

Since we have no anchor points we cannot directly compare
our calculation results to the real positions (“ground truth”),
i.e. the final translation and rotation of the signal sources and
the receiver network are not determined. For an evaluation of
the quality of the algorithm we use singular value decompo-
sition (SVD) to generate a transformation to align our found
positions with the real-world positions.
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Fig. 2. Distribution of local minima in percent for two dimensions. For four
receivers and for three signal sources the risk of ending in a local minimum
is exceedingly high.

III. SIMULATION

We have implemented the algorithm in C++. Simula-
tions were run in both the two-dimensional and the three-
dimensional case. For the signal velocity we choose the speed
of sound at 20 ◦C, which is c = 343 m/s.

For any numbers of microphones and sound sources, where
n,m ≤ 14, we created 100 random scenarios in the plane
and in space with an edge length of 1000 m. Timestamps were
calculated and passed to our algorithm. As an abort condition
of the algorithm we chose an error threshold ε. If the threshold
could not be reached after a maximum number of iteration
steps the run was marked as not successful.

In some cases the localization algorithm failed and got stuck
in a local minimum of the error function, see Fig. 2. This
opposes errors in finding positions due to under-determined
scenarios. Local minima occur in uniquely determined or over-
determined scenarios. The failure rate converges to zero with
increasing number of microphones and signals.

In a visual representation we saw that items were blocked
on the wrong side of a line or a plane. We implemented an
algorithm that mirrored them on the other side by way of trial.
This resolved local minima in some but not in all cases.

Furthermore, we ran experiments with simulated TDOA
error. Here, the jitter in timestamping the signals at the
receivers is assumed to be Gaussian distributed. Errors of a
standard deviation up to 200 ms were tested, which is a spatial
equivalent of 70 m. With increasing TDOA error the average
distance from the real positions grew linearly and the risk of
local minima increased.

We have compared our algorithm to a non-linear least-
squares fit using gradient descent, which is a common ap-
proach to non-linear problems. It is briefly mentioned with
regard to this problem in [8]. Both algorithms, the least-
squares fit and the Cone Alignment algorithm, are executed
with Newton’s method following, which speeds up conver-
gence. For the least-squares fit we find the distribution of local
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Fig. 3. In the 4M / 6S minimum case in planar space the Cone Alignment
algorithm solves 99.4% of a total of 8000 random scenarios. Using gradient
descent we achieve only 97.6 % after max. 100 attempts per scenario.

minima similar to the results of the Cone method. We observe
regions with high risk of local minima, especially in the case
of four microphones and for three signal sources.

We focus on the prominent case of four microphones in
a plane, a minimum case where solutions are unique. Using
Cone Alignment we achieve a failure rate which undermatches
the failure rate of the gradient method by approximately 15 %
for varying numbers of at least six signals.

We suppose that the gradient descent method fails to escape
local minima, as it can only decrease in its error function.
In contrast, the particles of the spring-mass simulation gather
momentum while relaxing the spring constraints. In this way,
barriers can be overcome towards a smaller minimum. As
we implemented particle velocity as an imitation of physical
springs we did not have to optimize a momentum parameter.

We have run repeated executions of our spring-mass simula-
tion with randomized initial values, which increases the proba-
bility to find a solution. In the minimum case of 4 microphones
and 6 signal sources in the plane we achieve a success rate of
99.4 % after 100 repeats with randomized initialization. Only
0.6 % of all cases remain stuck and unsolvable, see Fig. 3. As
we can split larger scenarios into subsets of this size and merge
them after solving a subset, we can solve larger scenarios in
the same way. This form of repeating should also work for
the other minimum cases, for 5 / 4 and for 7 / 3 microphones
and sound signals, and for the three-dimensional case.

In the case of the gradient descent method and Newton’s
method combined we could not achieve such a high success
rate. After 100 repeats still 2.4 % of all scenarios fail to be
solved, which is more by a factor of four.

IV. REAL-WORLD EXPERIMENTS

We have tested this theoretical approach in several real-
world experiments. We use a network with laptops as network
nodes. Our software establishes TCP/IP-communication via
wireless network (WLAN) between the laptops and it provides
precise time synchronization up to an order of 0.1 ms. On
every computer we record audio signals, either audible sound
or ultrasound. In the case of audible sound we use the built-
in microphones. Ultrasound signals are received with external

Fig. 4. Left: Receiver platine with ultrasound capsule. Right: Beacon with
eight ultrasound capsules facing in all directions on top of the model train.

receiver devices which we have built and which are connected
to the laptops. From the discrete audio signals we calculate the
time points of arrival using the synchronized time. They are
exchanged to every participating computer and the positions
are computed locally.

In a first experiment we placed eight receiver devices on
a green field on our campus in an area of 30 m. With their
built-in microphones they recorded audio signals produced by
an assistant who walked beneath the computers while clapping
two wooden bars at arbitrary locations.

The spring-mass simulation got the times of the clapping
and computed the relative locations of microphones and sound
signals. We achieved an average location error (Euclidean
distance) of the microphones of 28 cm (σ = 14 cm). The
average error of the signal positions was 39 cm (σ = 28 cm).

Now, we present a tracking system for moving targets using
our algorithm. It can quickly be set up, without the need
to measure the positions of the devices. This is in contrast
to many commercially available tracking systems which are
expensive and need to be calibrated. Of course, when the
positions of at least three of the devices are specified, the
relative coordinates that we obtain can be converted to absolute
coordinates.

Our ultrasound tracking system consists of a sender beacon
and receivers that record and process the signals from the
beacon (Fig. 4). It has been assembled from off-the-shelf com-
ponents and underprices most commercially available tracking
systems.

The beacon creates short ultrasound pulses. With eight
ultrasound capsules facing in all directions it creates an
approximately isotropic signal. The beacon can be carried by
a person or we attach it to a moving unit, for example a model
car or a model aircraft. It is battery powered so it can be used
independently from line voltage.

The receiver devices record the signal with their ultrasound
microphones. The analog signal is then amplified and dig-
itized. Over a serial connection the data is forwarded to a
processing computer. Here, the data stream is searched for
signal peaks, as in the case of audio signals.

In an experiment we track a moving model train. On a
very simple trajectory, an oval of the dimensions 3.9 m ×
1.8 m, the train travels with a velocity of about 0.5 m/s. The
ultrasound beacon has been attached to the roof of the model
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Fig. 5. Trajectory of the model train with the ultrasound beacon attached.
The five receivers are located outside the track. The root mean square (RMS)
error of the trajectory is 2.5 cm compared to the track.

train, see Fig. 4. Five receivers are placed roughly in an oval
around the track, at a distance of 4 – 6 m. As we conduct a
2D experiment we place the receivers at the same height as
the beacon. Of course, our algorithm can be used in three-
dimensional settings. Then, we distribute the receiver devices
in space.

Next, the ultrasound capsules are roughly oriented towards
the oval track and connected to adjacent laptops. With our
software running they can find each other in a Wi-Fi network
and synchronize their clocks. Using a measuring tape we
measure the positions of the ultrasound capsules up to a
precision of 3 cm. For the dimensions of the train track we
describe the geometrical shape of the track.

After approximately three rounds the spring-mass algorithm
got the TDOA data as the only input. We calculate both the
unknown ultrasound receiver positions and the trajectory of
the train on the track. Comparing the data we find it well
matching the ground truth data. However, we observe some
overestimation. The receivers show an average deviation from
the real positions of 44.5 cm (σ = 7.7 cm).

The overestimation is weakly pronounced for the trajectory
of the model train (Fig. 5). We observe only a small overesti-
mation which results in a root mean square (RMS) track error
of 2.5 cm.

V. CONCLUSIONS

We have addressed the problem of self-localization us-
ing nothing but TDOA information with our novel Cone
Alignment algorithm. The iterative spring-mass simulation
solves the problem of relative localization in terms of energy
minimization. Particles obeying Newton’s law of inertia gather
momentum while spring constraints are relaxed.

Like all iterative approaches for this problem the algorithm
suffers from the risk of local minima. We have quantified
the success rate of our algorithm and we have increased the
probability of solving the scenario of 4 microphones and 6
signals to 99.4 %. Here, the algorithm outmatches the non-
linear least squares approach, especially in the minimum case
of four receivers in a plane.

In our real-world experiments we have proven the viability
of our approach. We have located the receiver positions with
unknown audio signals from the surroundings. Furthermore,
using our algorithm we have created a quick setup reference
system for vehicle tracking where precise indoor locations in
the order of centimeters are provided. There is no need to
measure the positions of the reference receivers. As the sole
tasks we attach the ultrasound beacon to the moving vehicle
and place the receivers at generally distributed, but arbitrarily
chosen, positions in the room.

A. Future work
In graphical representations of the problem we have seen

that we could solve the problem of local minima in some
cases by flipping the particles. In this way, we might further
increase the success rate of the algorithm.

We also plan to improve the practical aspects of our
localization scheme. For many scenarios the assumption of dis-
crete, distinguishable sound events is impractical. We envisage
speaker tracking and locating ourselves by passing cars. This
requires to calculate the TDOA by comparing audio signals
using cross correlation. We expect this will extend the number
of application scenarios for our technique.

Furthermore, we aim to improve the prediction of moving
signals. Especially under the assumption of spatial coherence
of signals we plan to apply filtering techniques like the Kalman
filter or a Monte Carlo simulation. Then, we can estimate the
beacon’s position and interpolate in case of missing signals.

Of great interest is also the question of unsynchronized
localization. This would simplify the approach immensely and
would be helpful especially for unreliable network connections
and for mobile networks like GSM or UMTS.
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