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Abstract- Several techniques have been developed for 
position location in a two dimension (2-D) system but few 
techniques have been done in a three dimension (3-D) 
context. Some of the techniques and algorithms proposed for 
3-D are often subject to accuracy problems. We propose in 
this paper a novel technique of 3-D indoor position location. 
This method relies on techniques for ultra wide band (UWB) 
transmissions. The location algorithm is in terms of time 
difference of Arrival (TDOA). Numerical simulations show 
that the proposed approach improves precision of 3-D 
position location. 

Keywords— TDOA; 3-D Position Location; UWB. 

I. INTRODUCTION 

In general, finding with accuracy the position location of 
sensor in a 3-D system isn’t easy due to the complexity of 
the resolution of the hyperbolic equations. Specifically, 
this accuracy is more difficult in indoor environment with 
the multiple Non Line Of Sight (NLOS). The feasibility 
studies of a 3-D position location scheme for example in 
indoor environments have been done in [1] and [2]. Some 
research works shown that there are errors in the results 
following to the third component (z). In Ref. [3], it has 
been suggested to spread the 3-D study in order to better 
characterize the impact of the component (z) on the 
accuracy of position location. Several techniques have 
been developed for positions locating in a 2-D but few of 
them have been done in a 3-D context. Furthermore, some 
works have shown that the iterative method gave better 
accuracy for 3-D position localization [2]. 

The purpose of this paper is to propose a method which 
gives better accuracy for a 3-D localization. Ref. [4] 
proposed this algorithm for a 2-D position location; we 
extend this algorithm firstly for a 3-D position location and 
secondly, we propose an approach that provides better 
estimate. To validate this method in a 3-D context, we 
consider simulated TDOA with errors and estimate the 
position of the sensor. Because UWB occupies large 
bandwidth and uses extra low power for transmission, we 
use UWB Impulse Radio with Time Hopping Pulse 
Position Modulation (IR-UWB TH-PPM) signal to 
estimate TDOAs. We added error ranging from -0.06 to 
0.05 ns on the TDOAs. We considered A White Gaussian 
Noise (AWGN) channel. 

The remainder of the paper is organized as follows. In 
section 2, we describe the TDOA position location 
technique. Section 3 presents mathematical model for 
hyperbolic TDOA equations. In section 4, localization 
algorithm used to estimate the sensor position is presented. 
Simulation results are presented and analyzed in section 5. 
Finally, we conclude the paper in section 6. 

II. TDOA TECHNIQUE 

In most cases, TDOA techniques are based on estimating 
the difference in the arrival times of the signal from the 
source at multiple receivers. In our study, we have one 
sensor and five sources. The scenario that we consider is 
such that the sensor calculates its own position. So it 
receives signal from the transmitters and the first signal 
that it detects is the reference signal. The received signal at 
the sensor is the superposition of the emitted signals. The 
cross-correlation of the received signal with each 
transmitted signal is done and the peak of the cross-
correlation output gives the time delay for this signal. The 
difference of the peaks of the cross-correlation between 
the received signal and the first signal arrived on one hand 
and the following signal on the other hand represents the 
TDOA between the first transmitter and the following 
transmitter signal. 

In a 2-D space, all possible positions of the sensor for 
same TDOA on a pair of transmiter is a hyperbola. And in 
a 3-D context, this set of possible positions of the sensor is 
a hyperboloid. So, each estimated TDOA defines a 
hyperboloid between the two transmitters on which the 
sensor may exist. To avoid raise any ambiguity on the 
issue, we need at least four transmitters in order to finally 
find the position of the sensor in a 3-D environment. In 
this paper, we consider five transmitters to obtain four 
TDOAs. 

III.  MATHEMATICAL MODEL OF HYPERBOLIC 

EQUATIONS 

This section describes the general location 3-D method. 
In our system, we have considered a limited set of fixed 
nodes which represent transmitters. There are five of them 
and they are positioned at known coordinates (xi; yi; zi). 
One of them is the reference. It is selected according to the 
time delay its signal is detected by the sensor. The sensor 
moves and its coordinates (x; y; z) are unknown. 
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The squared range distance (di) between the sensor and 
the ith transmitter is given by the relationship (1):                       �d��2��x� ‐ x�2
�y�  ‐ y�2
�z�‐ z�2.            �1� 

Let ‘‘r’’ be the letter which indicates the number of the 
reference transmitter, (ti) the time at which the ith 
transmitter’s signal is detected, (tr) this one (time) of the 
reference, (c) the speed of light and (di,r) the range distance 
between the sensor and the reference transmitter. The 
range difference between the reference and the others 
transmitters is given by (2): d�,�� d�  ‐ d� �  c�t� ‐ t�� 

     �    ��x� – x�2
�y� – y�2
�z�  – z�2 
                             ‐  ��x� ‐ x�2
�y�‐ y�2
 �z�‐ z�2 .          �2� 

where �t� � t�� is the TDOA between the emitter (i) and 
emitter (r). 

Equation (2) defines the set of nonlinear hyperbolic 
equations whose solution gives 3-D coordinates of the 
sensor. Solving them is difficult. Consequently, linearizing 
this set of equations is commonly performed. One way of 
linearizing these equations is done through the use of 
Taylor-series expansion and retaining the first two terms 
[5]. A commonly used alternative method to the Taylor-
series expansion method is to first transform the set of 
nonlinear equations in (2) into another set of equations [6], 
[7]. 

Rearranging the form of (2) into                            �d��2��d�,�
dr�2.                                       �3� 
Equation (1) can now be written as: �d�,��2
2d�,�d�
�dr�2��x��2
�yi�2
�yi�2‐ 2x�  ‐ 2y�y                                             ‐2z�z 
 x2
y2.                            �4� 
Subtracting (1) at i = r from (4), results in �d�,��2
2d�,�dr� �x�2
y�2
z�2� ‐ �xr2
yr2
zr2�  

                   ‐2�xi‐xr�x ‐ 2�y� ‐ yr�y  ‐ 2�zi‐zr�z .                �5� 
Let be  K�= x�2+ y�2+ z�2;  Kr= xr2+ yr2+ zr2;  

  x�,�= x�-xr ;   y�,�= y�-yr  and   z�,�= zi-zr. 
Then, equation (5) becomes           �d�,��2
2d�,�d�� K�‐ Kr‐ 2x�,�x ‐ 2y�,�‐ 2z�,�z.      �6� 
The set of equations in (6) are now linear with the sensor 

coordinates (x; y; z) and the range of the reference emitter 
to the sensor �d��  as the unknowns, and more easily 
handled. 

In the literature, to solve this set of equations, two 
situations have to be considered: where the emitters are 
arranged linearly and where they are distributed arbitrarily. 

When the emitters are arranged linearly, the estimation 
of the position location of the sensor is simplified. The 
methods which describe this situation for 2-D location 
position with an exact solution exist in [4]. 

The situation which is more complex is when the 
emitters are distributed arbitrarily. Some methods have 
been already proposed, but they are limited. In the 
following section, we describe the method developed in 
[4] and we add some hypothesis for our study. 

IV.  METHOD DESCRIPTION 

We considered for our work that the emitter’s number is 
fixed to five and one sensor. Obviously, the method can be 
developed for higher number of transmitters. 

The set of equations described in (6) are transformed as 
follows. On one side, we put the known parameters and on 
the other side the unknown such as: 

        12 �d�,�2‐ K�
Kr� � ‐�xi,rx
zi,ry
zi,rz 
di,rdr�.       �7� 
This equation is the ith line of matrix with (M-1) rows 

where M indicates total number of transmitters. This line 
can be written as: 

         12 �d�,�2‐ K�
Kr�  �  ‐�x�,�   z�,�  z�,�    d�,� ! xyzdr
"      �8� 

where r $ %1, 2 , 3, … M( and  i � �1, 2 , 3, … M�\%r(. For 
example, if the number of emitters is five and the reference 
emitter is the number five, then r = 5 and i = 1, 2, 3, 4. 

When TDOA estimated values are exact, the above 
result of the left side members will be identical to those on 
the right side. Generally, these values are never exact. 
They are often estimated with some errors. We indicate 
those error vectors by �W), the left side matrix by �h�; the 
right side matrix by �G-�  and �Z-�  respectively. So (8) 
becomes:  h � G- Z-. Then we obtain (9):                                    W �  h � G- Z-.                               � 9� 

The elements of Z- are related to (1), which means that 
(9) is still a set of nonlinear equations in three variables x, 
y, and z. In [4], the approach used to solve the nonlinear 
problem is the two-stage maximum likelihood (ML) 
method. They assume firstly that there is no relationship 
among the coordinates of the sensor and the range distance 
between the sensor and the reference emitter. Weighted 
linear Least-Squares (LS) gives an initial solution. A 
second weighted LS, done by imposing the known 
relationship (1) to the initial solution gives an improved 
final solution of position estimate. 

A. First Estimation 

In this paper, we assume general case where emitters and 
sensor are far away from each other. Because of that, we 
use the equation (10) which contains the elements of the 
first estimation. Q is the covariance matrix of TDOAs 
vector. Its size is (M-1) x (M-1), 01 for diagonal elements 
and 0.501 for all other elements, where 01 is the TDOA 
variance. The first estimation solutions are given in [4]:               Za1���Ga�TQ‐1Ga�‐1 �Ga�T Q‐1 h.                        �10� 

We assume that �Za,x  ; Za,y  ; Za,z ;Za,dr � are initial 
solutions given by (10). 

B. Second Estimation 

To determine the final solution, new matrix and vectors 
are defined. This relationship takes into account the fact 
sensor coordinates and the estimated range distance 
between the sensor and the reference. The errors vector 
over this can be rewritten as: W2� h2 – Ga2Za2      With: 
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 h2�
89
99
:�Za,x‐xr�2
�Za,y‐yr�2
�Za,z‐zr�2�Za,dr�2 ;<

<<
= ; Gf� ?1 0 00 1 01 1 1@ ; Za2� !�x‐xr�2�y‐yr�2�z‐zr�2 " .    �11� 

Another matrix defined is the diagonal matrix which 
contains the estimated position with respect to the 
reference:D = diag B(ZC,D- xr), (ZC,E- y

r
), (ZC,F- zr), (ZC,G�)H .     ( 12) 

The final solution is derived from: 

Zf�IJKLD‐1Q‐1GaD‐1GaGfM‐1�JKLD‐1GaQ‐1GaD‐1� h2. �13� 
The final position estimate is then obtained from (Zf) as 

              Zp� �Zf  
 ?xryrzr@   or  Zp�  ‐�Zf  
 ?xryrzr@ .        � 14� 
Solutions described by (14) are 3-D solutions like those 

for 2-D in [4]. When applying the method as described in 
[4] for 3D position location, (14) doesn’t always give the 
best estimate; we get sometimes different results in two 
cases. The first case is when the sensor position is such 
that all its coordinates are greater than those of the 
reference transmitter. In this case, the estimates are given 
by one of the solutions given by (14). 

The other case occurs when the sensor is posted or 
located such that one or two of its coordinates are smaller 
than those of the reference transmitter. In this case, none 
of the solutions proposed in (14) gives a good estimate. 
However, one of these solutions gives two coordinates 
which are exact. 

To overcome this problem, we propose a new approach 
that corrects these errors. 

C. Performed Method For 3-D Position Location 

Let (ZP,Q , ZP,R , ZP,S� be the obtained solutions from (13). 
We assume that each coordinate can be positive or 
negative which results in two states. Given that, we 
defined 23 = 8 possible positions described as follows: 

S1= (�ZK,D + x� ; �ZK,E + y�  ; �ZK,F + z�)  

S2= (- �ZK,D + x�  ; �ZK,E + y�  ; �ZK,F + z�)  

S3= (�ZK,D  + x� ; -�ZK,E  + y�; �ZK,F + z�)  
S4= (�ZK,D + x� ;  �ZK,E +  y�; -�ZK,F  + z�)  

S5= (- �ZK,D + x�  ; -�ZK,E + y� ;  �ZK,F + z�)  

S6= (-�ZK,D + x�  ; �ZK,E + y�  ; -�ZK,F + z�)  

S7= (�ZK,D + x� ;  -�ZK,E + y�  ; -�ZK,F + z�)  

 S8= (-�ZK,D + x�  ; -�ZK,E + y�  ; -�ZK,F + z�) .   (15) 

 
These solutions include two solutions (SU and SV ) 

derived from equation (14). For each position �SW� , we 
estimate another�dW,�� , with j=1, 2,…, 8 and for each 
position, the �dW,�� is compared to �d�,��. The position for 
which the �dW,�� are the closest to the �d�,�� will be the best 
estimate. In other words, we compare TDOAs of new 
estimated positions with actual TDOA. Finally, we select 
the one for which the TDOAs are the closest to the first 

estimated TDOAs �t� � t��. This technique automatically 
eliminates solutions which are not in the region of interest. 

V. SIMULATION RESULTS 

The performance of this method is investigated through 
the use of computer simulations. Five emitters are used in 
the location system. Their coordinates are:  

E1 (5; 10; 7); E2 (-17; 8; 9); E3 (11;14;-5); E4 (21; 11;13); 
E5 (7; 2; 10). The measurement unit is in meters (m). 

Signals used for simulations are derived from the first 
five Gaussian pulses which were modulated in PPM with 
multiple access codes TH. Each transmitter uses pulse 
which corresponds to its number. We analyzed two cases; 
first case, where we add the same errors to the simulated 
TDOA errors ranging from 0.01 to 0.05 (ns) with a 0.001 
step. In either case, the TDOA added noise differs from 
one transmitter to the other. These errors are distributed 
according to a pseudo-random normal distribution. 

We suppose the sensor moves and we estimate its 
position in different positions. We present in this paper 
two positions: P1 (12; 7; 15) and P2 (8; 22; 2). For each 
position, we realized 1000 runs and determinate the 
number of reference transmitters and the number of 
solutions for which the estimate is the best. Finally, we 
plot the Root Mean Squared Error (RMSE) for different 
positions as a function of Signal to Noise Ratio (SNR) 
ranging from -10 dB to 10 dB. 

A. Addition Of Same Errors On TDOA Estimate 

We can see in Fig. 1 of the zoomed positions coordinates 
between the actual and estimated sensor at P1 (12; 7; 15) 
and P2 (8; 22; 2)). Their RMSE plots (RMSE-P1, RMSE-
P2) are given in Fig. 2. All estimated positions that we 
proposed are also presented in Table I. 

For the first position, simulations show that the reference 
emitter is the fifth (E5) and S1 is the best estimation among 
the eight solutions we propose. Sensor position is 
estimated at (12.004; 6.979; 14.996). TDOA RMSE 
(RMSE-P1) is constant at 0.0137m. For second case we 
analyze in our works, S2 gives the best estimate and the 
reference emitter is the third (E3). Sensor position is then 
located at (8.003; 22.002; 1.985). We can remark also that, 
S1 one of two solutions in (14), gives two exact 
coordinates (y and z) and the solution S8 gives wrong 
estimate. The RMSE (RMSE-P2) is 0.0100m. 

  

  

 
Figure1. Actual and Estimated Positions P1 and P2 
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Figure. 2 RMSE in AWGN channel with same TDOA errors 

TABLE I.  EIGHT PROBABLE POSITIONS FOR SENSOR LOCATED AT 
P1(12; 7; 15) AND P2 (8; 22 ;2) 

 
P1 (12; 7; 15) P2 (8; 22; 2) 

X(m) Y(m) Z(m) X(m) Y(m) Z(m) 
S1 12.004 6.979 14.996 13.997 22.002 1.985 
S2 01.997 6.979 14.996 8.003 22.002 1.985 
S3 12.004 -2.979 14.996 13.997 5.998 1.985 
S4 12.004 6.979 5.004 13.997 22.002 -11.985 
S5 01.997 -2.979 14.996 8.003 5.998 1.985 
S6 01.997 6.979 5.004 8.003 22.002 -11.985 
S7 12.004 -2.979 5.004 13.997 5.998 -11.985 
S8 01.997 -2.979 5.004 8.003 5.998 -11.985 

B. Addition Of Different Errors On TDOA Estimate 

As shown in the first case, illustrations of the second 
case are shown in Fig. 3 and Fig. 4. Estimated positions 
are given in Table II. As previously indicated, same results 
were obtained for each position. However, RMSE 
increased with the added error. In this case, the added error 
ranges from -8.857 ns to +5.926 ns. TDOA RMSE of 
position P1 (RMSE-P1) ranged from 0.02m to 0.03m, and 
this of position P2 (RMSE-P2) ranged from 0.06m to 
0.08m. 

 

 

 

TABLE II.  EIGHT PROBABLE POSITIONS FOR SENSOR LOCATED AT 
P1(12; 7; 15) AND P2 (8; 22 ;2)  

 
P1 (12; 7; 15) P2 (8; 22; 2) 

X(m) Y(m) Z(m) X(m) Y(m) Z(m) 
S1 12.019 7.015 14.985 14.026 21.998 2.006 
S2 1.981 7.015 14.985 7.984 21.998 2.006 
S3 12.019 -3.037 14.985 14.026 6.053 2.006 
S4 12.019 7.015 5.039 14.026 21.998 -12.063 
S5 1.981 -3.037 14.985 7.984 6.053 2.006 
S6 1.981 7.015 5.039 7.984 21.998 -12.063 
S7 12.019 -3.037 5.039 14.026 6.053 -12.063 
S8 1.981 -3.037 5.039 7.984 6.053 -12.063 

 
Results confirm our hypothesis: indeed in the first 

position considered, all the coordinates of the reference 
transmitter are much higher than those of the sensor. 
Therefore, the first solution gives the best estimate. In 
other case, when one component of the sensor is lower 
than the reference, the first or eighth solution could not 
provide good estimates. With this approach, results are the 
same when transmitters are near or far away from the 
sensor and RMSE is better than [4]. 

VI.  CONCLUSION 

In this paper, localization method for ultra-wideband 
(UWB) system is studied. The method used in the 
localization algorithm is in TDOA terms. Simulations 
results achieved allowed us to validate our hypothesis. 
This approach improves the method described in [4] and 
gives another method for 3-D localization with more 
accuracy. However, several research challenges remain to 
be investigated or addressed. Experimentation in realistic 
settings (in the presence of physical obstacles such as 
NLOS) is essential in evaluating the performance of the 
localization algorithms under consideration. 
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Figure. 3 Actual and Estimated Positions P1 and P2 

Figure. 4 RMSE in AWGN channel with Different TDOA errors 
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