
2011 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 21-23 SEPTEMBER 2011, GUIMAR̃AES, PORTUGAL

MapUme: Scalable Middleware for Location Aware
Computing Applications
Warsun Najib, Martin Klepal, Sigit Basuki Wibowo

Nimbus Centre for Embedded System Research
Cork Institute of Technology, Cork, Ireland

Email: {warsun.najib, martin.klepal, sigit.wibowo}@cit.ie

Abstract—In this paper, a scalable middleware for supporting
location aware applications, MapUme is presented. Scalability
feature will enable development of a broad range localisation
systems from small size to a large number of localised objects.
Distributed data processing supports the scalability requirement
by distributing data processing load into several computing
machines. The distributed data processing is implemented using
service oriented architecture which fits well with the scalability
requirement. This feature promotes scalability since a main
server may forward requests to multiple service instances without
the knowledge of the service client.

Index Terms—middleware, scalability, localisation system, lo-
cation aware application

I. I NTRODUCTION

Over recent years the development in the area of context
aware computing have been growing rapidly. An important
aspect of context is location, which is typically an output
of a localisation system. Location information is usually not
for direct use in application but to enable other business
applications to utilise the location. Therefore middleware is
the perfect solution to bridge between business application
with location sensing technologies. A business application can
subscribe to a location update of an object provided by the
middleware.

A number of middleware platform have been proposed
for providing location service to location based applications.
Some middleware platforms developed for location service
primarily focus on positioning method and hiding the process
from location aware application such as Java Location API,
PlaceLab [1], MiddleWhere [2], and TraX [3]. Other platforms
concentrate on presentation and access to location information
and geographic content such as Open GIS Location Service
and Nexus [4]. However most of the middleware lack of func-
tionality to support distributed data processing and therefore
limits scalability of the system. Furthermore, many emerging
localisation systems also need distributed data processing for
scalability and performance reasons.

In this paper, we propose a middleware for location aware
computing applications called ”MapUme” (Map You and
Me). The middleware provides a platform for multi-sensor
data fusion with distributed data processing capability to
enable scalability and increase performance. MapUme offers
location service which can represent location informationin
both physical and symbolic location. The middleware is also
extensible to enable evolution of the middleware component

and augmenting new location technology. MapUme provides
middleware infrastructure for location awareness that separates
business applications from location detection technologies as
we can see in Figure 1.

MapUme 
Middleware

Location Aware 
Applications

Sensor Technologies

Mobile Users

Business 
Applications

MapUme Service API

Sensor Interface

Environment 
Tool

Configuration

Fig. 1. MapUme provides middleware infrastructure for location awareness
that separates business applications from location detection technologies

The remainder of the paper is organised as follow. In Section
II the requirements of the location middleware are briefly pre-
sented. Section III describes middleware architecture. Section
IV presents the experiment and evaluation of the middleware.
Finally section V concludes the paper.

II. M APUME M IDDLEWARE REQUIREMENTS

The user requirements of a localisation system has been
increased and now required more sophisticated architecture to
meet those requirements. In this section these requirements are
briefly identified and described.

A. Scalability and Distributed Data Processing

User requirement of the localisation system can be a range
from simple to a large scale location aware application. There-
fore, the middleware should be able to support development of
a broad range localisation system from small size to a large
number of localised objects. This requirement is related to
distributed data processing requirement since the more object



we need to track the more computing resource is needed.
When a computing machine is not adequate to process all
localised objects we need to distribute the data processingload
into several computing machines.

B. Usability

One of important property of a location middleware is
usability. A middleware need to be flexible so that it can be
implemented in a broad range of application domain. Hybrid
location representation increases usability by providingtwo
types of location information: physical and symbolic location
[5]. Location aware applications may represent their locations
either in terms of coordinates of reference, or symbolic names
such as floor, corridor, and room number.

C. Extensibility

Extensibility is important property of a middleware since it
will increase usability of the middleware and enable evolution
of the localisation system. Interfaces definition of middleware
components will enable extensibility of component implemen-
tation. A new implementation of a component such as fusion
engine with different algorithm can be added by implementing
those interfaces definition. Another important component is
measurement which needs to be extended when different
sensor technology is introduced in the localisation system.

Extensibility can also be seen in term of capability to
incorporate different location sensing technologies. Different
technologies give location information in different formats,
different resolution and confidence. Middleware will enable
the fusion of these different location sensing technologies.

III. M APUME M IDDLEWARE ARCHITECTURE

Mapume location middleware is developed based on a
layered software development model for localisation system
presented in [6]. The model provides common terminologies
and abstraction layers for heterogeneous localisation systems
and applications. It offers also an opportunity for constant
evolution of localisation system development and deployment
of new technologies into existing applications.

A. Middleware Components

The architecture of MapUme middleware can be seen in
Figure 2. The following descriptions will give a brief expla-
nation of the middleware components.

1) Measurement Component: The measurement layer de-
fines a data structure of the sensor data and interfaces which
has to be implemented for each type of measurement.

2) Aggregator Component: The Aggregation layer consists
of Configuration, Measurement Logger, Distribution Manager
component, and Database.

3) Fusion Engine Component: The fusion engine uses
sequential non-linear Bayesian filter technique, implemented
as particle filter [7]. The estimated position from the engine
is stored into Object Logger component.

4) Arrangement Component: The Arrangement component
provides information about relationships between objectsand
its environment description (map, floor plan).

Location

Service 

Arrangement

Engine

S
e
rv

ic
e

L
a

y
e
r

A
rr

a
n

g
e

m
e
n

t

L
a

y
e
r

F
u

s
io

n

L
a

y
e
r

A
g
g

re
g

a
ti
o

n

L
a

y
e
r

M
e
a

s
u
re

m
e
n

t

L
a

y
e
r

S
e
n

s
o
r

L
a

y
e
r

Engine 

Manager

Aggregator

Measurement

Object

Logger

Configuration

Measurement

Logger

Database

Sensors

Distribution 
Manager

Fusion 
Engine

Fig. 2. MapUme Architecture which is developed based on layered software
model for localisation system

class DistributionManagerComponent

«interface»
IDistributionManager

+ ProcessMeasurement(IMeasurement, string) : void
+ UpdateObjectState(State, string) : void

Fig. 3. Interface definition of Distribution Manager Component for support-
ing distributed data processing

5) Location Service Component: MapUme offers location
service allowing other applications to utilise the location
information available in the middleware. Location servicegets
location information from both Object Logger and Arrange-
ment component.

B. Implementation of Scalability and Distributed Data Pro-
cessing

The middleware can operate in distributed mode to support
scalability and distributed data processing. The Distribution
Manager is responsible for controlling communication and
data distribution among several involved computing machines.
It includes distributing the measurement data and updating
object position based on result from fusion engine from remote
machine. The communication among MapUme middleware in
different machine is developed using Windows Communica-
tion Foundation (WCF) part of .NET framework which pro-
vide application programming interface for developing service
oriented applications.

Figure 3 shows interface definitions of Distribution Manager
component which will be used for distributed data processing.
Distribution Manager provides two important interfaces: the



No of tracked 
object in main 

server= 0

ProcessMeasurement 
(id,m) in main server 

X = Get Least 
Occupied Server

Measurement
Data(id,m)

Update Object 
Sate(id, state) in 
Object Logger

SendMeasurement 
(id,m) to server X

state = 
GetUpdate(id)

Y

N

Fig. 4. Flowchart shows how to manage distributed data processing

first is for sending measurement data from main server to
remote computing machine, and the second is for updating
object state (position, direction, etc) after obtaining estimate
position from fusion engine component. All object states are
stored in Object Logger component of the main server.

When MapUme middleware operates in distributed mode,
Distribution Manager employs a simple algorithm as depicted
in the flowchart in Figure 4 to determine into which remote
machine (server) a new sensor measurement data will be
forwarded. The algorithm will look for least occupied server
to determine the next destination to process measurement data.

IV. M IDDLEWARE EVALUATION

This section describes evaluation of the MapUme middle-
ware with particular emphasise on scalability and distributed
data processing aspect - the thrust of this paper. The test-bed
consists of eight access points installed evenly distributed in
the two-story building with dimension 25 x 70 meters. Smart
phone equipped with WiFi sensor was used as mobile client
which communicate with MapUme through wireless network.
In this testbed the MapUme middleware is used to developed
a WiFi based localisation system. Several tools have also been
built to support the experiment. Mobile fingerprint tool is
developed using Qt language and deployed in the windows
mobile based smart phone. The RSSI fingerprint collected with
this site survey tool then stored in the database. Environment
tool is developed to configure location middleware and create
configuration file in XML format.

A. Processing Time in Standalone Mode

The evaluation in stand alone mode is done by running
MapUme middleware implementation only in one machine in
contrast to distributed mode which involves several machines.
The processing time is the time required by middleware
to process measurement data and calculated from the time

TABLE I
COMPARISON OF PROCESSING TIME IN STAND-ALONE MODE USING

DIFFERENT COMPUTING MACHINES AND DIFFERENT NUMBER OF

PARTICLES

Number
of

Particles

Server I Dual Core Server II Quad Core

2 x 2GHz, 2GB Ram 4 x 2.1GHz, 4GB Ram

(milliseconds) (milliseconds)

50 544 197

100 556 209

200 567 229

500 689 286

1000 1183 528

2000 1757 664

receiving measurement data until the location engine finishes
to estimate object position. Table I shows the comparison of
processing time needed using different computing machine.

B. Scalability and Distributed Data Processing

For evaluation purpose, offline measurement data was col-
lected by a walk in the building with smart phone device.
A simulator opened the recorded data and then sent them
to a WiFi localisation system which implements MapUme
middleware.

�����������������
��	
	����

�������������	��
�������

�����
���������	��
���
��
��

�

�
�������������	��
�������

�����
���������	��
���
��
��

�

� �������������	��
�������

�����
���������	��
���
��
��

�

�

�������������	��
�������

�����
���������	��
���
��
��

�

�

�
���������
��
������	�
��

��
�����	�	��
���	���
�	��

��

���

��������
�
�

Fig. 5. Configuration for scalability and distributed data processing test.
Server I = Dual Core 2 x 2GHz, 2GB Ram. Server II = quad core 4 x
2.1GHz, 4GB Ram. Server I acts as a manager while server II as amember.

Figure 5 shows the hardware configuration used to evaluate
scalability and distributed data processing. This configura-
tion involves two computing servers where each server runs
MapUme GUI which implements the middleware. Server
I runs as a manager which is responsible for managing
distribution of measurement data while Server II run as a
member. Distribution Manager component controls distributed
data processing including serialisation of measurement data
and location update from all member servers to the manager
server. The communication between these servers uses WCF



TABLE II
CPU USAGE OFMAPUME IN DISTRIBUTED MODE

Tracked
Objects

Server I 2x2GHz
2GB RAM

Server II 4x2.1GHz
4GB RAM

No of Thread CPU (%) No of Thread CPU (%)

1 1 33.80 0 n/a

2 1 37.37 1 10.92

5 3 77.02 2 18.86

10 5 80.28 5 24.59

20 10 82.09 10 23.73

40 20 81.26 20 23.35

80 40 82.67 40 23.55

Fig. 6. Average processing time of MapUme middleware in distributed
mode involves 2 servers with different number of tracked objects. Number
of measurement data = 222. Time interval between measurement data = 1
second. Engine = particle filter with 500 particles.

framework for building service oriented application provided
by .NET.

1) CPU Usage: Table II shows CPU usage of each Map-
Ume server with different number of tracked object. Currently,
measurement data are distributed evenly into each server
which makes computation load of each server uneven since
the processing speed of CPU is different. Each thread is
assigned to track one object. The ongoing work will improve
the distribution of the load by introducing load balancing
algorithm. It will take consideration the processing capability
of each server in the load distribution process.

2) Processing Time and Latency: The number of tracked
object affects average processing time of measurement. The
bigger number of tracked object, the bigger processing time
needed for each thread to fuse a measurement data. Figure
6 illustrates average of processing time of one measurement
data of the MapUme middleware with different load (number
of tracked objects). The distribution of measurement data from
one server to another server introduces a network latency
3.436 milliseconds. This latency is still reasonable sinceit
is relatively small compare with average processing time.

Table III shows total and average processing time required
to fuse all 222 measurement data from simulator with different
number of tracked object. These results is calculated when the

TABLE III
TOTAL PROCESSINGT IME ON DISTRIBUTED MODE, MEASUREMENT=

222,PARTICLE = 500

Tracked
Object

Total Processing Time Average Processing Time

(minutes) Each Measurement (seconds)

1 4.233 1.144

2 4.583 0.619

5 7.650 0.414

10 14.517 0.392

20 29.100 0.393

40 54.100 0.366

80 115.033 0.388

middleware is running in distributed mode involving both of
server I and II. The average processing time each measurement
converges to a number between 366 - 392 milliseconds as
the number of tracked object increasing. This is much faster
compare with average processing time when number of tracked
object smaller. This is because in distributed mode, the load
are distributed to all participating computing machines.

V. CONCLUSION

The paper has presented and evaluated the MapUme, a
scalable middleware for localisation systems. The scalability
feature enables scaling up localisation system to facilitate
tracking a large number of object with support of distributed
data processing. Service oriented architecture approach is used
to implement distributed data processing since this feature
promotes scalability by allowing a main server to forward
requests to multiple service instances without the knowledge
of the service client. Future research work will focus on
usability and extensibility of MapUme middleware.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of EI
under the Proof of Concept PC/2007/0073 and the EC FP7 ICT
LocON project in funding the work reported in this paper.

REFERENCES

[1] A. LaMarca, Y. Chawathe, and S. Consolvo, “Place lab: Device position-
ing using radio beacons in the wild,”Pervasive, 2005.

[2] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Campbell, and M. Mick-
unas, “MiddleWhere: a middleware for location awareness inubiquitous
computing applications,” inProceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware. Springer, New York, 2004.

[3] A. Cupper and G. Treu, “Trax: A device-centric middleware frame-
work for location-based services,”IEEE Communications Magazine, no.
September, pp. 114–120, 2006.

[4] D. Fritsch and S. Volz, “Nexus - the mobile GIS-environment,” Sym-
poTIC’03. Joint 1st Workshop on Mobile Future and Symposium on
Trends in Communications, pp. 1–4, 2003.

[5] I. Satoh, “A location model for smart environments,”Pervasive and
Mobile Computing, vol. 3, no. 2, pp. 158–179, Mar. 2007.

[6] W. Najib, M. Klepal, and D. Pesch, “A Software Development Model for
Localization Systems,” inPOCA - Positioning and Context Awareness
Conference, Antwerp, 2009.

[7] Widyawan, M. Klepal, and D. Pesch, “A Bayesian Approach for RF-
Based Indoor Localisation,” inIEEE ISWCS, Trondheim, Norway, 2007.


