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Abstract— Estimates of locations are never certain, especially
in indoors environments, and it is useful not only to determine
an estimate of measurement variables but also to know its
uncertainty. In addition, location information is gathered at
different places, devices, and sensors. This leads to the problem
of transmitting uncertain location estimates efficiently across a
network. We present multiple algorithms that transmit uncertain
location information efficiently. Those algorithms reduce the
amount of data, which is needed to convey the measurement
results and their uncertainty, significantly.

I. INTRODUCTION

GNSS receivers, which are able to determine their global
positions, have a good but limited precision. Similar, indoor
locating systems (IBS) provide position estimates of a rather
large uncertainty as accuracies and precisions are low. This is
due to the fact that IBS use sensors such as radio-frequency
ranging and signal strength detectors, IMUs, and cameras,
which are subjected to measurement noise and measurement
errors. Thus, also the resulting location estimates are subjected
to imprecision.

Luckily, many motion-triggered applications, location-based
services (LBS), and sensor fusion algorithms do not require
high precision and can cope well with the fact of uncertainty
location measurements if they are aware of the degree of
uncertainty.

Uncertainty can be presented in different forms. Typically,
the output of filters such as Kalman or Particle filters are
used to express the measurement estimate and its precision.
Other forms include representations using Dempster-Shafer
theory. Mathematically, all those formats can be expressed
as a series of probability distributions Pi(A) with i counting
the observations and A being a vector. This vector contains
coordinates that describe the position of an object and the time
at which the object was located on the given position.

Frequently, the results of measurements are not available
at the place where they are needed. Because of that, they
need to be transmitted from a source (e.g. a filtered sensor
or sensor fusion algorithm) to the sink (e.g. an app, a LBS, a
cooperative sensor fusion algorithm, or a cooperative location
determination).

Of course, if the communication link between source and
sink is direct, even the results of Particle filters consisting
of thousands of particles can be transmitted without loss in
precision and without nearly any transmission delay. However,
most of the time, this is not the case: As location tracking is

mainly intended for mobile devices, communication is done
wireless and thus, the communication link is subject of limited
transmission bandwidth and transmission errors. Last not least,
communication requires energy which is not that plenty on
mobile devices or sensor nodes. Thus, the question arises on
how to transmit the probability distributions Pi from source
to sink effectively.

More precisely, encoding and decoding algorithms are
needed that transmit a series of probability distributions while
requiring
• a low bit and frame rate,
• a low algorithmic transmission delay, and
• moderate computational power
• without losing too much of information.

Not all coding algorithms can be superior in all of those
parameters thus a set of algorithms is required that can be
selected according to application specific requirements.

In this paper we propose a protocol and a set of algorithms
for efficient exchange of uncertain geolocation information.
We continue with describing related work in Section II. Then,
we provide a problem statement and sketch algorithms on
how to solve this problem (Section IV). Finally, we give an
overview on scientific problems that need to be addressed
before uncertain location information can be transmitted ef-
ficiently.

II. RELATED WORK

Only a few publications address the problem of efficiently
transmitting location information.

Harri et al. [1] describe a data format for transmitting
geolocalization that modifies the World Geodetic System 84
(WGS84) [2] to use less overhead. To achieve this they encode
the coordinates as well as the timestamps in only 16 bit instead
of the 32 bit that would be default. That way they claim to
reduce the overhead up to 71%.

Worral and Nebot [3] introduce a technique to automatically
extract a compressed roadmap out of GPS data, so that the
resulting map can be used on low power and low memory
devices. To compress the data they use a clustering and linking
method for the GPS data.

In a standardization draft, Hoene et al. presented a format
how to encode uncertain geolocation information [4]. The
authors assume that uncertain location data is represented by
the output of Kalman-type, Gaussian-Sum, and Particle filters.



They used an XML presentation to transmit the filter outputs.
No particular effort was spent on compressing this data.

III. PROBLEM STATEMENT

As described already in the introduction, we assume that
location information is measured time sequentially and de-
scribed with probability distributions called Pi. The function
Pi expresses the probability distribution of the location of
an object. As the location is time depended and time is
also a measurement variable, it is reasonable to include both
coordinates C and time t into the parameter A of the function

Pi. We define A as A =

(
C
t

)
.

The index i counts the sequential measurement observa-
tions. Each function Pi becomes available at TP (i) and is
valid until TP (i + 1), when Pi+1 can be used.

We want to transmit the functions Pi from source to sink. At
the sink, we receive probability distributions called P̃j , which
become available at time TP̃ (j). The transmission process
is lossy, so that the received probability distributions do not
match Pi perfectly.

As a measure of similarity we consider the Canonical
correlation between two segments piece-wise defined, time
variable probability distributions P (A) and P̃ (A) defined as

P (A) = P (

(
C
t

)
) = Pi(A) : TP (i) ≤ t < TP (i + 1)

and

P̃ (A) = P̃ (

(
C
t

)
) = P̃i(A) : TP̃ (i) ≤ t < TP̃ (i + 1)

Then, the Canonical correlation can be calculated with the
two vectors of independent variables X and Y where X =(

A
P (A)

)
and Y =

(
A

P̃ (A)

)
. The Canonical correlation p

is the result of the maximum of cor(a′X, b′Y ) with a and b
being two vectors that need to be determined, too.

In this work, the problem to solve is to transmit Pi so that
P̃j shows a maximal Canonical correlation p to Pi under the
additional constrains of limited algorithmic transmission delay,
limited transmission resource and of constrains computational
resources.

IV. IDEAS

In this section, we sketch our ideas on how algorithms
should look like in order to solve the above mentioned
problem.

A. Transmitting Filter States

Location tracking is based on physical measurements, which
estimate time of flight, signal strength, angle of arrives, mo-
tions, objects in images, and many other forms of sensor input.
All these sensor measurements are subjected to measurement
noise. Because of that, filters are used to estimate the real
value of the measurement.

Many filter types have been developed. In location tracking
typically only a few are applied. These include different

types of Kalman-Filters, filters that work with one or multiple
Gaussian Normal distributions, and Particle Filters.

Our first idea is to define probability distributions Pi by the
output given by filters. In order to transmit Pi, we just sent
the filter state from source to sink. More precisely, the filter
state and its interpretation depend on the kind of filter used.

For example, a Kalman Filter uses a system model to
estimate the probability of changes. This data is combined
with a model of measurement data and control input, if any, to
estimate the true value of the parameters under study. It allows
linear relations between filter variables and assumes Gaussian
noise distributions. Kalman filters show a robust behavior
in many applications and they and the related Extended or
Unscented Kalman filters are frequently used.

The result of a Kalman filter is a posteriori state vector (for
example a location) and a posteriori estimated covariance. The
state is given by a vector x̂k|k and the covariance by Pk|k.
Both estimates are given for the time index i. If the vector
has a dimension of d (e.g., four for x,y,z, and t), then the
covariance matrix has a size of d∗d. If we to transmit Pi, then
we suggest that all these three variables shall be transmitted
to indicate a position estimate, its distribution, and the time
of measurement. More precisely, Pi is given by a Gaussian
distribution have of the transmitted mean and covariance.

Particle Filter, also called sequential Monte Carlo methods
(SMC), have the advantage that arbitrary distributions can be
approximated. As such, they approximate Bayesian models,
which consist of probability distribution functions, which
define the degree of "believe" to which a particular value
is true. Particle filters approximate probability distribution
function with a number of particles. More particles are placed
at positions that are more likely. Each particle has Dirac shape.

The a posteriori state of a particle filter is approximated
by M particles called x

(M)
i , which are weighted with w

(m)
i .

The function Pi is defined by all particles, their weights and
again the time index i. At the receiver Pi is reconstructed
by the particles that define a piece-wise probability defined
distribution function.

Gaussian Sum Particle Filters have similar properties as
Kalman and Particle filters. Their probability distributions are
described by the sum of Normal distributions [5]. As such, it
can be seen as the combination of two previously mentioned
filtering approaches.

The a posteriori state of a Gaussian Sum Filter is ap-
proximated by M Gaussian distributions called x̂

(M)
k , which

are weighted with w
(m)
k and have distributions described by

covariance matrices P
(M)
k|k . Again, all those parameters shall

be transmitted.

B. Coordinate System and Datum

Our second idea is to change the coordinate system and
datum in order to reduce the number of bit that need to be
transmitted.

Any location is relative to a frame of reference. The frame of
reference defines the position, orientation and other properties
of a coordinate system, in which an object is located. A



number of geodetic reference frames have been defined such
as WGS84, ETRS89, or ITRF2005. Typically, they define the
reference point and the orientation of the coordinate system.

In robotics, reference frames are used, too. They are refer-
encing to a zero point, have an orientation, and may be scaled,
mirrored, rotated. For example, a so called transformation
matrix can be applied to the location vector to transform
coordinate systems.

Commonly in navigation, besides Cartesian also Polar coor-
dinate systems are used. In addition, a polar coordinate system
has the benefit that – for example – circular bands can be
described easily if the rotating angles have a high uncertainty
or are not defined.

To describe the location of an object, the reference frame has
to be named or defined, and the type of coordinate system must
be given. If this reference frame is transmitted only once, then
the compression efficiency can be reduced as smaller number
and a more compact representation of data can be used.

C. Demand driven precision

The third idea is to transmit data only at the precision that
the source is requiring.

In the following we assume the following situation: we as-
sume that there are two peers. One peer, in the following called
receiver, wants to obtain uncertain geolocation data from the
other peer, in the following called transmitter. The receiver
might already have uncertain location data and be hence not
interested in the full information known to the transmitter. The
information is hold in form of Kalman filters. The receiver
might be interested either only in locally defined parts of the
data or only up to a certain precision. Our transmission format
is designed to minimize the data transmitted. It can also reduce
the data transmission if the peers want to exchange data as
equal peers or if more than two peers participate.

In order to reduce the amount of data to transmit, the
receiver informs the sender about the exactness he needs to
approximate its locations and also a probability distribution of
his guessed location. The exactness is transmitted as a quantity
between 0 and 1, where 0 implies the receiver needs the exact
data the sender has and 1 will be let the sender just send one
Kalman filter that is an approximation of the data the receiver
has with no promise on the quality. If ∆ is between 0 and 1
the sender will transmit the data such that the receiver can for
each position compute the probability of his location up to an
error of ∆.

Without the need to transmit exact data the data stream can
be significantly reduced. There are some observations that led
to this compression:

• Any Kalman filter with a weight less than ∆/k does not
need to be transmitted (assuming there are k filters in
total).

• Any Kalman filter with a low weight and high distance
from the probability area of the receiver can be ignored.

• If there are two Kalman filter with similar position and
large distance from the probability area of the receiver

these two Kalman filters can be approximated by a single
Kalman filter.

Also the algorithm of the sender needs to be efficient in
the sense that the sender might have only a limited amount of
resources to compute the information he want to transmit.

D. Compression

The fourth idea is to explore two compression methods
to transmit uncertain geolocation data. In the following, we
describe two compression algorithms can be applied to Particle
filters or Kalman filters:

Method 1: We send the complete list using standard com-
pression techniques. This method is used if either the full
list is requested or the list is too short to expect a gain
using the Method 2 describe below. We choose the format
in such a way that we can expect good compression if the
positions and covariance matrices are similar. We can expect
such similarities if the particles stem from a common source
like a sensor.

Method 2: We send the data in a progressive based on a tree
structure. This leads to the same benefits as the first method.
Additionally, this allows an interactive protocol. The partial
submitted data gives the receiver a preliminary view over the
information available. This allows the receiver to request only
parts of the data by asking only for parts of the tree and to stop
the protocol if the data transmitted has the desired precision.
The protocol falls back to the first method if the number of
elements of a compartment falls below a threshold.

In the following, we first describe the format for Particle
filters and explain later how the additional data for Kalman
filters, i.e. the covariance matrix is transmitted.

1) Full list transmission: If we want to transmit the data in
form of the list, we assume that the receiver and sender have
an agreement on the following information: the bounding box
of the particles transmitted in form of two vectors and the
precision to which the position data should be transmitted.
This information can be already known to both sides if this
version is used within a larger protocol else the receiver
transmits his wishes as part of the request. The transmitter
sends only the particles within the bounding box up to the
wished precision.

The information is sent by first transmitting the list of
particles x

(M)
i , and then the list of weights w

(M)
i . The list

of n-dimensional vectors is send as n lists of scalars, one list
representing one dimension, instead of sending a list of n-
tuples. To exploit correlation between the data we send scalar
values a1, . . . , al of k bits each by sending first the l first
bits of a1, . . . , al, then the second bits of a1, . . . , al and so
on. If the data is correlated we can expect to have series
of similar data which gives good compression rates using
standard compression techniques like zip.

Besides relying on the compression we can also reduce the
transmitted data for the following two reasons: since the most
significant bits are determined by the bounding box this bits
do not have to be transmitted for the points. Further, if we



have sent the bits up to the requested precision we can stop
the transmission.

2) Tree based approach: We use a tree approach to send
the particles. Quadtrees were introduced [6] to store two-
dimensional data. The extension to three dimensions is called
Octree and often used in computer graphics.

The tree has k = 2d children per node, where d is the
dimension of the x

(M)
i . The tree subdivides the space by

splitting each dimension into two parts. This fixes a bit in
the entry of x(M)

i for the corresponding dimension. If a node
stands for a region its children stand each for one of the
compartments of that region.

The tree is build up in the following way: the root contains
all particles within the bounding box. While a node u contains
more particles than a threshold t, split the corresponding area
and the corresponding nodes as children to u. Then move the
particles to their corresponding newly created child nodes of
u; repeat.

For each node we will send the sum of the weights of the
particles in that node. We call the sum of the weights of the
particles contained in the compartment defined by a node u
the weight of u. The root node has weight one. Assume that
u has weight w̄. To transmit the weights of the k children
of u, we do not transmit k weights, but only the differences
between the actual weight w of a child and the average weight
w̄/k. This means we transmit ∆w = w̄ − w/k.

If we have reached a leaf node we send the particles for
that compartment as a full list. In this case not wi but ∆wi.

The partial received information gives blurred information
contained in the list. This partial information can be already
enough information for the receiver to decide which region
might be worth of further transmission. Sending back his area
of interested the transmitter needs not to send the complete tree
but can send only those parts that contain more information the
receiver is interested in. Further it allows to stop transmission
if the receivers has gained the amount of precision he is
interested in. We can also expect a reduction of the data
sent if the points in ~p form clusters. If several points lay
within the same region of the tree descending into that region
specifies the leading bits for this points simultaneously. These
bits do not have to be transmitted if the list of these points is
transferred.

If we transmit data from Kalman filters we cannot di-
rectly average over the particles. Instead, for each compart-

ment we additionally transmit two normal distributions by
xmin, wmin, rmin and a particle filter by xmax, wmax, rmax.
The covariance matrices are given by multiplying the identity
matrix with rmin and rmax respectively. The two distributions
shall fulfill the following constraint: for any position the effects
of the Kalman filters from the compartment are bounded
by the two normal distributions. This allows estimating the
effects of the particle filters in this compartment on the other
compartments and the receiver to decide if he wishes these
particles to be transmitted or not.

V. CONCLUSION & OUTLOOK

This initial work presents ideas of transmitting and com-
pressing uncertain, relative and transformed location estimates.
It is aimed as a basis of first scientific discussions, because we
believe that much more research has to be done before uncer-
tain location information can be transmitted and compressed
efficiently.

Our next steps will include collection of real, measured data
set of Kalman and Particle filters used for indoor locating
systems. After that, we will compress them with the methods
described in this paper and we will measure the compression
quality and effectiveness.
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