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Abstract—We describe the design, implementation, and eval-
uation of Molé, a mobile organic localization engine. Unlike
previous work on crowd-sourced WiFi positioning, Molé uses
a hierarchical name space. By not relying on a map and by
being more strict than uninterpreted names for places, Molé
aims for a more flexible and scalable point in the design space
of localization systems. Molé employs several new techniques,
including a new statistical positioning algorithm to differentiate
between neighboring places, a motion detector to reduce update
lag, and a scalable “cloud”-based fingerprint distribution system.
Molé’s localization algorithm, called Maximum Overlap (MAO),
accounts for temporal variations in a place’s fingerprint in a
principled manner. It also allows for aggregation of fingerprints
from many users and is compact enough for on-device storage.
We show through end-to-end experiments in two deployments
that MAO is significantly more accurate than state-of-the-art
Bayesian-based localizers. We also show that non-experts can
use Molé to quickly survey a building, enabling room-grained
location-based services for themselves and others.

I. INTRODUCTION

The ability for a mobile device to perceive a user’s location

has many applications, from social networking “check-ins” to

location-appropriate content, such as automatically presenting

people with a relevant train schedule.

While the global positioning system (GPS) enables devices

to sense their location in most outdoor environments, bad

weather and “urban canyons” can restrict its operation. In

addition, there are many indoor positioning applications where

GPS can provide only limited assistance, as it typically pro-

vides a position fix only near windows and doors.

To enable room-grain indoor and outdoor positioning in

GPS-less environments, researchers have used physically-fixed

wireless beacons to associate a unique “fingerprint” with each

place or grid point [1]–[4]. While the types of wireless beacons

have varied over time, most techniques now use 802.11 WiFi

beacons because of their near ubiquity, particularly in urban

and suburban environments. Because of the difficulty in trans-

lating between distance and received signal strength [5], more

compact alternatives to fingerprinting – e.g., triangulating

among the beacons – are generally eschewed.

One of the key problems with fingerprinting, however, is

learning the fingerprint for each place – however “places” are

designated. We call the process where a person links a finger-

print to a place “binding.” Several commercial vendors offer

positioning services, which include a fingerprint-generation

survey [6]. However, these come at a steep price: a large office

building can cost $10,000 USD with no maintenance included.

Because this is prohibitively expensive for many applications

– such as contextualizing a device’s behavior based on which

room of a house it is in – several research groups have begun

to crowd-source fingerprints from end-users [7]–[10]. In the

model for these Wikipedia-style approaches, a single locally-

knowledgeable user performs the bind for a place and many

visitors can then rely on the database of fingerprints.

Molé focuses on a new point in the design space in crowd-

sourced, or “organic,” positioning systems. Some systems,

such as OIL [8], present a map to the user: users bind places

by clicking on the map. Others, like Redpin [7], allow the

association of any text string with a place’s fingerprint. In

contrast, Molé arranges the world hierarchically; this imposes

a clean, intuitive namespace (country, region, . . .), and allows

for data prefetching at a building scale if not larger. It also

isolates problems in the fingerprint database to small portions

of the tree. Molé relies on compact data structures that allow

many fingerprints to be stored on the user’s device. In turn,

this allows the user’s device – not a server – to differentiate

among potential places with similar fingerprints, improving

privacy.

In our experimental results, which are discussed in more

detail in the full version of our paper, Molé’s positioning

algorithm, MAO, achieves a 10% improvement over the state-

of-the-art [3]. In a live, controlled experiment, it had 93.1%

spot-on accuracy. In a crowd-sourced experiment with four

untrained users, it grew to a similar level of accuracy after an

hour’s worth of participation and experienced no wrong-floor

errors.

II. MODEL OF PLACES

Molé arranges the discrete, human-designated places of the

world in a hierarchy. While the hierarchy could be of variable

depth, our current implementation contains five levels, as the

estimate in Figure 1 illustrates. From coarse to fine, the levels

typically refer to country, region, city, area, and unique place

(e.g. room). Areas are the unit of fingerprint aggregation,

transfer, and, therefore, privacy; the server knows at most what

areas you visit. Areas typically refer to street addresses (e.g.,

“4 Cambridge Center” in Figure 1), although they could refer0000–0000/00$00.00 c© 2011 IEEE



Fig. 1. Molé’s User Interface. It shows the country, region, city, area, room
hierarchy in street address format.

to larger outdoor areas such as parks. The design also allows

aggregation at higher levels.

III. IMPLEMENTATION

Molé’s implementation is divided into client and server

components. The client portion periodically scans WiFi signals

and makes an estimate of the current place available to

other applications on the same mobile device. Because all

position estimates are calculated on the client using a cache of

fingerprints, the client’s exact position remains private and new

estimates can be made in the absence of network connectivity.

Molé’s server components are currently hosted on Amazon

Web Services1. The source code for Molé has been released

under an open source license and we invite contributions2.

A. Client Components

The client itself consists of two parts: a daemon, which runs

continuously in the background, and a user interface, which

is displayed when the user wants to make a bind, modify

the daemon’s behavior, or view statistics. Figure 1 shows the

user interface. Its statistics include: the number of scans being

used to form the estimate; the count of distinct APs that were

observed within these scans; the current time between scans

(i.e. scan period); the number of areas and individual places

within those areas under MAO consideration; whether the user

is deemed to be moving; the score of the current estimate

(“overlap max”); and churn, the time since the estimate was

last changed. The Molé daemon exports the current location

estimate to all applications on the device.

Using Motion Detection As Haeberlen et al. showed [3],

comparing more user scans against each fingerprint improves

spot-on accuracy, with diminishing returns after about eight

scans with their data. But frequent scanning reduces battery

life, and having a fixed, large number of user scans introduces

a lag when the user is moving between places. If a device

has an accelerometer, Molé uses it to find a happy medium

between battery consumption and update lag. If the device is

estimated to be stationary, it slows down the scan rate and

1http://mole.research.nokia.com
2http://github.com/organic-positioning
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Fig. 2. Interaction between Molé’s client and server components. Two paths
are shown: (a) a bind coming from a surveyor (client A), being added to
the bind database, and being processed into an area’s fingerprint file (e.g.
Keilalahdentie 2.sig) and (b) a user’s device (client B) updating its local cache
of fingerprints for the areas that it is potentially in. First it queries to see
which areas match a random “loud” MAC with getArea(), then it fetches
the fingerprint files for those areas. After its cache is up-to-date, it can form
a position estimate locally.

other functions. When walking is detected, the current set of

user scans is discarded and the scan rate is increased (up to

once per 10s in our current implementation). By truncating

the user scans (11 in Figure 1), Molé returns a less accurate,

but more timely estimate. When the user stops moving, the

user scans accumulate and the estimate improves. Because we

simply truncate the positioning and bind queues in response

to movement, our method is independent of the choice of

the particular motion detection algorithm; we use Shafer and

Chang’s detector [11]. To further reduce battery usage, we

run the motion detector every 10 seconds with a duty cycle of

5%; at this rate motion detection has little effect on the overall

battery consumption of a typical smartphone.

B. Server Components

Figure 2 shows Molé’s four main server components and the

key methods clients use to make binds and access fingerprints.
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